Protein Folding

Andrew Torda July 2008 67.912 Struktur & Simulation

Question..

• how does a protein do this?

Background / stories

- from biochemistry Übungen (protein folding easy)
 - take lysozyme / ribonuclease...
 - put in 8M urea (unfolds)
 - remove urea (refolds)
- conclusion?
 - the protein sequence is all you need to fold a protein
 - is this true? Not always

Alternative (logical reasoning)

• protein folding should be impossible...

Protein folding should be difficult

from simple theory – Levinthal's paradox

- each amino acid has 2 or 3 or N conformations
- for a protein of M residues, it should visit N^M
- what if it spends 10⁻¹⁵s at each conformation?
- time to find one conformation for N=3 and 100 residues
- 3^{100} x 10^{-15} s about 1.6 x 10^{25} years
- is this serious? useful?
 - not correct approach to problem
 - proteins cannot be exploring space randomly

Who cares about protein folding?

Religious belief

- if we could understand folding we could
 - predict structure
 - design proteins that fold better (more stable)
 - identify essential residues for folding (not suitable for mutagenesis)

Issues / questions

- Kinetic versus thermodynamic
- What order do events happen in ? (collapse vs secondary struct)
- Is unfolding the same as folding?
- Is folding in a test tube the same as nature?
- Is unfolding in a test tube the same?

Are proteins in energy minima?

- Anfinsen story...
 - proteins can be unfolded and refolded alone
 - all the information is in the sequence
 - native conformations are the (free) energy minimum
 - thermodynamic belief
- more modern
 - many many proteins cannot be refolded in the lab
 - consequence .. maybe they need something else
 - maybe they are not always in free energy minimum
- kinetically trapped proteins...

Kinetic versus thermodynamic

- If proteins fold spontaneously and remain folded, they are thermodynamically determined
- If you leave a protein long enough and it unfolds, it was not in an energy minimum

• is this purely academic?

Consequences

- Thermodynamic
 - conforms to classic view
 - protein structure prediction
 - just a matter of modelling the real world
- Kinetically trapped
 - we cannot predict structure from sequence just by energies!
- Can we see which is the case?
 - leave a protein for 10 minutes and see if it finds another state
 - for 10 years? No.
 - depends on barriers
- Some stories
 - some evidence of kinetic trapping
 - some proteins do have other states
 - fibrils, Alzheimers, mad cow disease

Evolution / design consequences

- imagine I model physics perfectly and can predict structure
- I design a better more stable protein

- my new protein may be more stable
- it may never be found
- evolutionary implications
 - protein sequences may evolve for folding (+ structure and function)

Change of direction

- enough background on folding
- brief overview of experiments
 - no exam questions on this

Experiments

- What timescales do we think of?
 - maybe 10⁻⁶ for folding
 - maybe orders of magnitude slower (sometimes faster)
- Experimental approaches
 - force protein to unfold
 - chemistry (guanidinium HCL, 8M urea)
 - temperature (heat, cold)
 - change conditions and watch
 - try to measure very fast
 - try to change timescale
 - try to measure unfolding

Some real time experiments

- temperature jump
- stop flow
- fluorescence
- NMR
- circular dichroism (CD)

Temperature jump

Background..

- protein is cold (2°)
- bang with infra-red laser
- follow with trp fluorescence
- shortest time ?
 - about 250 ns
- main information ?
 - kinetics
 - not much specific structure

Stop flow

- Start from chemically unfolded protein
- Use quick mixing / change of conditions to refold

- example
 - lysozyme + guanadinium HCL
 - suddenly dilute in buffer
 - protein refolds

Stop flow and spectroscopy

watch with

- circular dichroism (follow secondary structure)
- fluorescence
 - (absorption, re-emission, polarisation)
- time scale?
 - $> 10^{-3} \text{ s}$
- difficulty?
 - fast mixing / dilution

NMR

- most detailed structural information
- problem?
 - not a sensitive spectroscopy
 - needs more sample
 - slower (signal averaging)
- advantages
 - most detailed structure information
- timescale
 - minutes to hours for details
 - maybe some seconds for 1-D spectra
 - fastest for limited kinds of information
 - put in a few labels (19F) peaks can be recorded quickly

What can one do with kinetic data

- information may not be very specific (structurally)
- combine with chemistry / molecular biology
- put labels on sites and repeat folding
 - fluorescence labels
 - NMR labels (¹⁹F, other techniques)
- molecular biology
 - mutate residues and find out
 - which residues change kinetics

Equilibrium / steady state approaches

- Time resolved approaches are very hard
- give up and use an equilibrium approach
- examples temperature or chemistry
- temperature
 - at 27°, protein is folded, at 70°, unfolded
 - record NMR spectra at 25°, 35°, 45°
 - no problem with time
 - should be able to follow which parts of spectrum disappear
- chemistry
 - protein is folded in PO₄ buffer, acetate buffer, ...
 - unfolded in 8M urea, guanidinium HCL
 - record spectra at various concentrations

What do we know

Some possibilities

- proteins form secondary structure first
 - helices and sheets then arrange themselves

OR

- hydrophobic collapse
 - hydrophobic residues find each other
 - backbone rearranges and secondary structure is fixed

OR

- some key residues interact
- then comes secondary structure and hydrophobic core

OR

• some mixture

OR

• different proteins behave differently / there are no rules

Why is experiment difficult

- Technical difficulties (obvious)
- Tradeoff
 - fast methods less information
 - more information too slow
- How real is it?
- Imaginary technique:
 - I can take any protein in denaturant
 - suddenly bring back native conditions
 - follow every detail
 - is this what happens in nature ?...

How real is experiment?

Our bodies – about 150 mM salt, regulated pH, temperature, ... If I denature a protein with high salt

- is the partially folded state natural?
 - it comes from disrupting a very special set of ionic interactions

If I heat the protein

- guaranteed to visit high energy states which are not natural Hope!
- the strongest interactions are formed first last to be broken Do proteins fold like this in nature ?
- proteins made from N to C terminus
- N terminus gets a chance to find structure, before rest of protein is there
- would permit very specific paths / kinetic trapping Next ... simulation and theory...

General kinetics

- What have we seen so far?
 - most properties have something like exponential decay
 - property = $a e^{\alpha t}$
 - rate of change proportional to quantity present
- whatever model should explain at least this

Monster Simulations

- Brute force long MD examples
 - 36 residues months x 256 processors 10⁻⁶ s
 - does not fold to native state
 - reasons?
 - force field no good ?
 - simulation time not long enough?
 - IBM blue gene (Pitera and Swop)
 - 20 residues implicit solvent 92 ×10⁻⁹
 - quite a good answer
 - Distributed folding @ home
 - some impressive results bounds on folding times

More feasible

- What can be simulated with MD
 - peptides (not here)
 - unfolding

Simulating unfolding

- Atomistic simulation of real protein too slow
 - take native structure at 300 K
 - gradually heat up
 - watch it fall apart
 - what breaks first?
 - secondary structure?
 - overall fold?
 - everything?
- Reasons to believe
 - the last interactions to form (folding) may be first to break (unfolding)

Problems simulating unfolding

Problems

- the system is visiting high energy states which may not really exist
- force fields are parameterised for 300 K
- property of unfolded state(s)
 - statistics may be dominated by huge number of partially folded states (more later)

Forgetting atomistic detail

- What are questions we can ask?
- What can we guess without any calculations?
- Questions
 - is there such a thing as a folding pathway?
 - how should we look at folding?
 - secondary structure forms first and is rearranged
 - hydrophobic residues come together and then secondary structure forms?
 - a few important contacts are formed, then structure forms

Side chain vs backbone driven

Textbook

- local secondary structure forms, then reorganises
- secondary structure depends largely on backbone Unfolded Chain
- Alternative
 - sidechains are very important

Stabilized a helices

Sidechains might be important

- backbone view does not predict collapse of protein
- α -helix and β -strand propensity is weak
 - examples from last semester
 - isolated peptides are not stable
 - β-strands often depend on long-range H bonds
- helix / strand formation depends on environment / solvent and is not known in open structure
- fold is largely predictable / characterised by pattern of HP (sidechains)
- proteins are most sensitive to mutations in core (they are important for stability)

Types of pathway

From classical chemistry we would like a path unfolded -> A-> B-> C-> folded (native)

Slightly more complicated

- could still give us similar kinetics
- would expect to be able to see Q

unfolded \rightarrow A \rightarrow B \rightarrow C \rightarrow folded (native)

Basic idea

- molecules may get sidetracked, but
 - every molecule sees A, B, C...
- where does it come from?
 - Levinthal's answer to paradox
 - there must be a preferred pathway
- old view / microstate pathway approach

Consequence of simple pathway

- does not really disagree with two state kinetics
 - A or B or C might be part of transition barrier
- pathway with detours explains multi-state kinetics
- does it sound intuitively reasonable?
 - what if a mutation perturbs A or B or C
 - whole pathway might break
 - maybe OK (this is why some mutants do not fold)

Ensemble view

- conformation space is huge
- will a protein be able to find a neat path through it?
- should we even look for paths?
- consider a multitude of paths...
- is this merely a cute picture?
- first implication...
 - entropy vs energy

taken from Dill, K.A., Protein Sci., 8, 1166-1180, 1999, Polymer principles and protein folding

Consequence of ensemble view

- As a protein folds
 - potential energy goes down (happy)
 - number of possible states goes down
 - entropy goes down (unhappy)
- interpretation in chemical terms
 - do we have a off-pathway intermediate ? (Q)
- do we have a reaction coordinate?
 - not a classic one
 - can we invent one? yes
 - if two atoms are in contact in the final structure
 - native contact
 - Q = number of contacts which are correct

Reaction path

- is this like a chemical reaction?
 - no
 - many molecules have same *Q*, but different conformations
- we want at least two state kinetics
 - where does barrier come from?

Entropic barriers

Nature cares about free energies

• $\Delta G = U - T \Delta S$

If a molecule walks around

- it takes a long time
- looks the same as an energy barrier
- Are these pictures useful?
- Do they agree with calculation?

Degree of Freedom (Φ_i)

Interpretation of landscape

Does this disagree with conventional pathway?

- mostly at early stages
- there is a multiplicity of "A"
- when near native, there are relatively few conformations, so there may be something more like a pathway

Agreement with other ideas

Agreement with experiment?

- experiment says most about average properties
 - these are the same in landscape picture
 - should we expect to find well defined, early intermediates?

Agreement with MD simulation?

• peptide results – argue that they correspond to near native view

Simple models

Return of HP models

- $g(\xi)$ is density of states
- how many conformations have ξ correct contacts

A bigger calculation

A larger calculation

- 27 residue
- simple lattice model
- estimations by sampling
 - not exhaustive
 - Q₀ correct contacts
 - C total contacts
 - F free energy

(anti) Summary

What we have not covered

- more MD results, especially unfolding
- other views of protein folding (centred about vital residues)
- less physical views
 - kinetic models
 - models based on distances without coordinates

Summary

- Gap between experiment and theory
 - experiment usually gives us averages
 - most calculations look at details
- Very different views on folding may be hard to distinguish
- Folding may not be hierarchical
- Folding may be guided by sidechains
- Early folding may be best modelled by either
 - very crude models (so space can be sampled)
 - forgetting particles and thinking in terms of populations
- Any useful model should agree with exponential kinetics and more complicated variations
- Even an ensemble view should explain results like critical residues