Applications – MD / MC

Andrew Torda, May 2008, 00.912

Basic tools

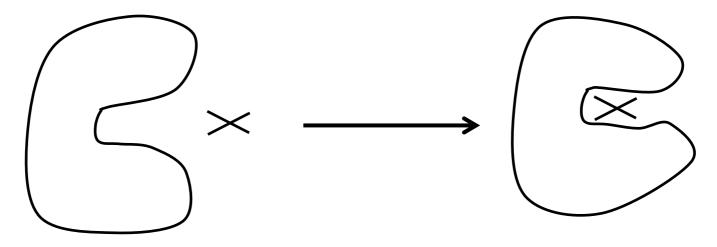
- Force field
- MD / MC

Some application areas

- timescales
- free energy calculations
- simulated annealing
- structure refinement

Simulating dynamics (optimistic / naïve)

- Claim
 - protein has a hinge which must open to bind ligand



- Can one see rates ?
 - rates for different ligands ?

Timescales

- most common quantity T
 - time to rotate by 1 rad
 - time for decay in $A(t) = A(0) e^{-t/\tau}$
 - relaxation time
 - characteristic time
- times in proteins...

Some typical times in proteins

	Amplitude (Å)	$\log_{10} T(s)$
bond vibration	0.01 - 0.1	-14 to -13
rotation of	5-10	-11 to -10
surface sidechain		
protein hinge	1 – 5	-11 to -7
bending		
rotation of	5	-4 to 0
sidechain in		
middle of a		
protein		
local loss of	5 - 10	-5 to +1
protein structure		

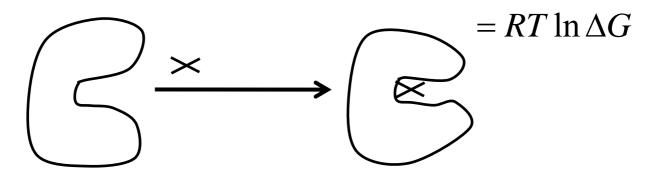
Timescales

- Typical big simulation $\approx 1 \text{ns} = 10^{-9} \text{s}$
- Imagine event with characteristic time 10⁻⁹s
 - may or may not be seen
- consider time 10⁻¹⁰ s
 - may be seen a few times
- What you would like
 - 100's or 1000's of observations
- Limits of timescales
 - fast events $T \leq t_{simulation}$ OK
 - events $T < t_{simulation}$ poor statistics
 - $\mathbf{T} \approx t_{simulation}$ no statistics
- Previous example (drug binding)
 - it is not enough to observe an event once (or few times)

Free Energy Calculations

- Free energy is most important
- Predicting drug efficacy

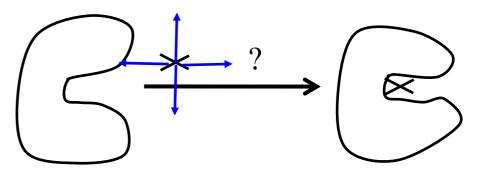
$$k_d = \frac{[drug][protein]}{[drug - protein]}$$



- could we just look at energies ? What are contributing terms ?
 - ligand-water \rightarrow ligand + water (many interactions, ΔS)
 - ligand+protein
 - ligand loss of entropy / water entropy change
- simulate ?

Free simulation for binding

• if we simulate, where will the ligand go?



- may take years for ligand to find protein
- short cut ?
 - force ligand to protein
 - artificial force + corrections
 - very difficult still requires rearranging water
 - entropy estimation very difficult

Estimating free energy differences

• G = U - TS

• but
$$S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$$

λ7

- so we cannot really get *S*
- some books write in terms of partition function
- similar problem especially visiting high energy regions
- forget absolute free energies
 - concentrate on ΔG
 - no problem usually interesting property

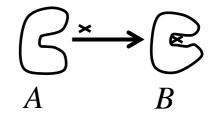
Work and free energy changes

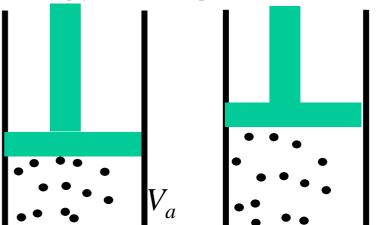
work done A to B

- free energy change
 - look at either state
 - real world automatically includes entropy

work going from unbound \rightarrow bound

- ΔG_{AB}
- what is B ? what is A ?
 - more later
- measuring work ?

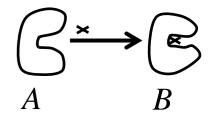




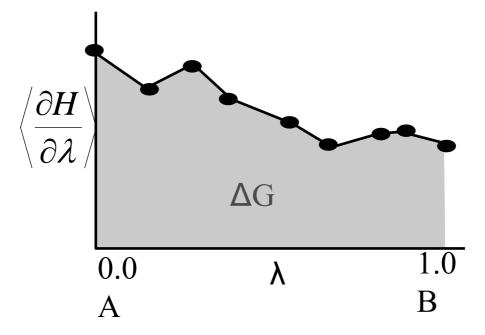
state a

 V_b

Work and free energy



measure the work needed to move from A to B



where *H* is again Hamiltonian $(E_{kin} + E_{pot})$

$$\Delta G = \int_{A}^{B} \left\langle \frac{\partial H(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda \quad \text{or} \quad \Delta G = \sum_{i=0}^{N_{step}} \left(H_{i+1} - H_{i} \right)$$

i=0

Binding energy - feasibility

- Would this approach work ?
 - $\langle \partial H / \partial \lambda \rangle$ must be a good average (lots of fluctuations)
 - must change λ slowly
 - chemistry problems: your simulation would
 - get averages with all water molecules
 - gradually remove water molecules (high energy ?)
 - find the correct binding
 - get good averaging there
 - states A and B are very different they must be well sampled
 - intermediate (higher energy states) must also be sampled
 - does not work well in practice

Paths / Energy differences (detour)

- Problem the path is too difficult changes too big
- Energy differences depend on end states not paths
- Look at $\Delta E_{1,2} = E_1 E_2$
 - would it matter if we go $E_1 \rightarrow E_3 \rightarrow E_2$?
- Can we take even stranger paths ?
 - go through non existent E_4 ?
 - no problem
- Same reasoning applies to free energies

	$\uparrow E_3$
E	E_2
	$ _{E_1}$

Applying different paths

- Originally wanted (ligand A or B, protein P)
 - $A + P \leftrightarrow AP$
- what if I know $B+P \leftrightarrow BP$?
- maybe $\Delta \Delta G_{AB}$ would be easier

•
$$\Delta \Delta G_{AB} = \Delta G_A - \Delta G_B$$

$$A + P \xrightarrow{\Delta G_A} AP$$

• what would $\Delta \Delta G_{AB}$ mean ?

 ΔG_{A}

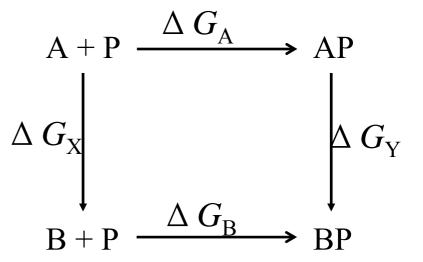
 $\Delta G_{\rm R}$

• what is relative binding strength ?

$$B + P \xrightarrow{\Delta G_B} BP$$

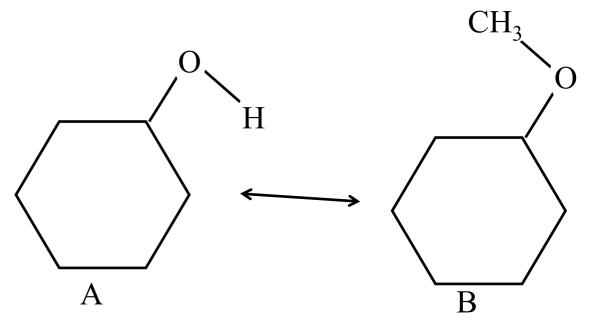
Alternative routes

- $\Delta G_{\rm A}$ and $\Delta G_{\rm B}$ too hard
- we would be happy with $\Delta \Delta G_{AB}$
- $\Delta G_{\rm A} + \Delta G_{\rm Y} = \Delta G_{\rm B} + \Delta G_{\rm X}$
- $\Delta G_{\rm A} \Delta G_{\rm B} = \Delta G_{\rm X} \Delta G_{\rm Y}$ remember $\Delta \Delta G_{\rm AB} = \Delta G_{\rm A} \Delta G_{\rm B}$
- so $\Delta \Delta G_{AB} = \Delta \Delta G_{XY}$
- why ΔG_X easier ?
- why $\Delta G_{\rm Y}$ easier ?



Easier free energy changes

- if A/B are rather similar
 - $AP \leftrightarrow BP$ or
 - $B + P \leftrightarrow A + P$ (free $A \leftrightarrow B$)
- are small changes smaller than
 - removing water order, removing water energy, finding protein...
- example
 - small change



Fictitious states

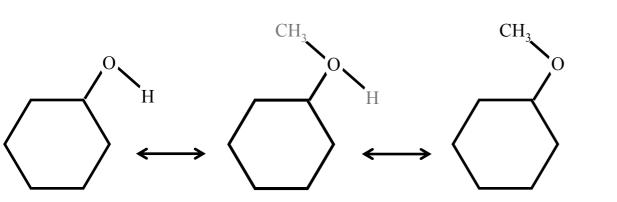
В

λ=1

- remember formulae
- we need to make chemistry a function of λ

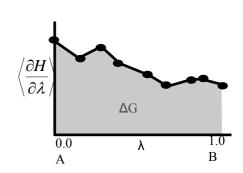
$$\Delta G = \int_{A}^{B} \left\langle \frac{\partial H(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda$$

$$\Delta G = \sum_{i=0}^{N_{step}} \left(H_{i+1} - H_i \right)$$



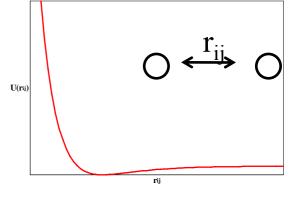
A/B

λ=0.5



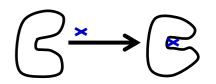
λ dependence

- $\lambda = 0$ an OH group
- $\lambda = 1$ an OCH₃ group
- $\lambda = 0.5$
 - charge of H half of original charge
 - radius / size (σ, ϵ) half of real value and so on
 - atoms gradually
 - appear in one direction
 - disappear in other
- description of system is now function of λ



λ dependent simulations

- two simulations necessary
 - λ from 0.0 \leftrightarrow 1.0 in protein
 - λ from 0.0 \leftrightarrow 1.0 in water
 - both from red ↔ blue



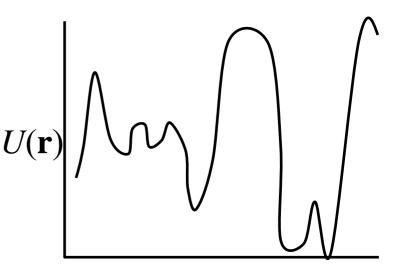
- As λ slowly moves from 0.0
 - water gradually feels more/less influence of some atoms
 - system should not have to rearrange itself too much
- when does method work best ?
 - when changes are small
 - comparison of similar ligands in a protein

Summary of free energy calculations

- from first principles:"free energy differences, equilibria
 - easy to calculate
 - in practice impossible (sampling not possible)
- forget absolute free energies
 - ΔG determine most phenomena in the world
- processes like binding still too difficult to simulate (slow, too many conformations / states to visit)
- most calculations these days use $\Delta\Delta G$
 - aim to get relative binding strengths

Simulated Annealing

- Classic reference separate handout / not on web (naughty)
- Basic tools
 - MC or MD with control of temperature
- Use : difficult optimisation problem
 - chip layout
 - travelling salesman problem
 - protein structure
- Optimisation problem
 - several dimensional (2 to 2 000)
 - many local minima



r

Kirkpatrick, Gelatt and Vecchi, Science, 220, 671-680, "Optimization by Simulated Annealing" (1983)

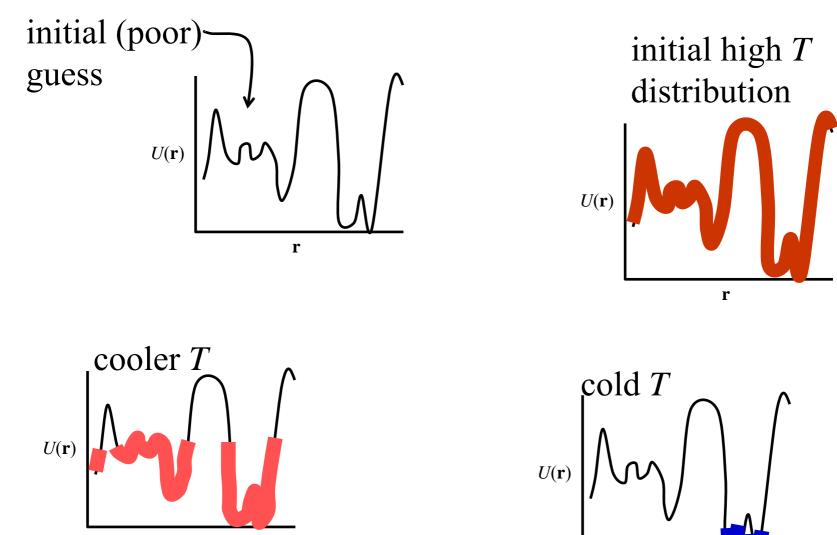
Procedure

while
$$(T > T_{end})$$

 $T(t) = T_0 e^{-ct}$
move system (Monte Carlo)

- T_0 initial temperature is hot
- *c* is decay rate (rate of decrease)
- cost function is
 - E_{pot} in chemistry
 - path length in travelling salesman
 - board cost in chip layout problem ...
- why may this work ?

Simulated Annealing concept

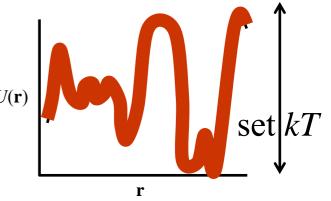


r

Properties, practical issues

Admit that there may not be a best solution

- not worth spending effort between many very good solutions
 Some problems have "phase transitions"
- How hot should T_0 be ?
- infinite ? No : look at barriers How slow should cooling be (*c*) ?
- system should be at equilibrium
- very slow
- Cool exponentially ?
 - best first guess
 - should certainly cool more slowly at transition points



Anneal with MC or MD ?

Historic use of Monte Carlo

• easiest to apply to many problems

Use MD?

- provides expected advantages (efficiency)
- uses available gradient / derivative information

Implementation

• Couple to temperature bath, make *T* time dependent

Use in practice ?

- simulated annealing in
 - most MD codes, refinement packages, ...

Refinement of Structures (NMR / X-ray)

- Story from first semester
- Problem : generate protein coordinates from NMR information (or X-ray)
 - distance geometry gives an initial guess, but
 - distance geometry methods spread error across all distances
 - errors are spread across bonds, measured distances
 - chirality may be broken (causes distance problems)
- Belief
 - coordinates are not bad, but could be improved

Pseudo – energy terms

- For some distance measurement *i* between some pair of atoms
 - r_0 measured distance
 - r(t) distance between particles at time (t)

• say
$$U_i(r) = c_i (r(t) - r_0)^2$$

• add this to normal force field

$$U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$

$$U_{(r(t))}$$

$$U_{0}$$

$$U_{0}$$

$$U_{r_0}$$

$$U_{phys}(\mathbf{r}) \text{ normal force field - atomistic (bonds, electrostatics...)}$$

result ?

- System moves to low energy + low fake energy
 - gradually moves to agree with experimental data

• Practical issues
•
$$U_{tot}(\mathbf{r}) = U_{physical}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$

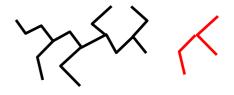
- $U_{i}(r) = c_{i} (r(t) r_{0})^{2}$
 - big c very artificial
 - small *c* system will be slightly biased to agree with experimental data

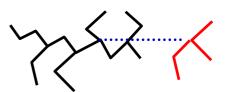
 λI

Fake Energies

Fake energies for many purposes

- Refinement of
 - X-ray structures (common)
 - NMR (often)
 - others: microwave spectroscopy, ...
- Modelling problems
- you want to put a bond in a model
 - putting it in directly
 - high energy bond
 - system stuck in minimum
 - introduce a distance restraint
 - gradually increase associated constant c





Summary

- What one can do with related methods
 - look at timescales of motions (very superficial)
 - free energy calculations important for problems such as binding of ligands
 - simulated annealing methods used as minimizers, not necessarily to get an ensemble
 - pseudo-(potential) energies (X-ray, NMR, ...)