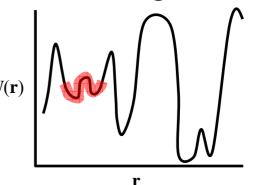
Exotic Monte Carlo

Andrew Torda, May 2008, 67.912

- Problems
 - we are interested in properties at room temperature
 - at room temperature, processes are slow
 - phase transitions, protein structure re-arrangement ..
 - system can be trapped



most large moves are rejected (wasted cpu time)

Goals

Speed simulation

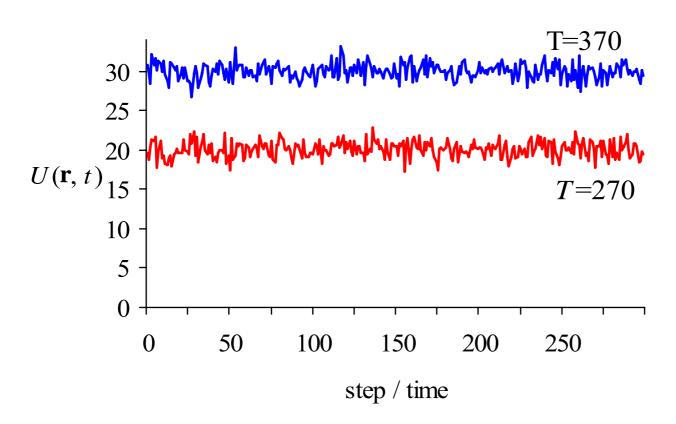
- two approaches
 - make barriers easier to pass
 - waste less time on failed moves

Restrictions

- must retain Boltzmann distribution
- must preserved detailed balance

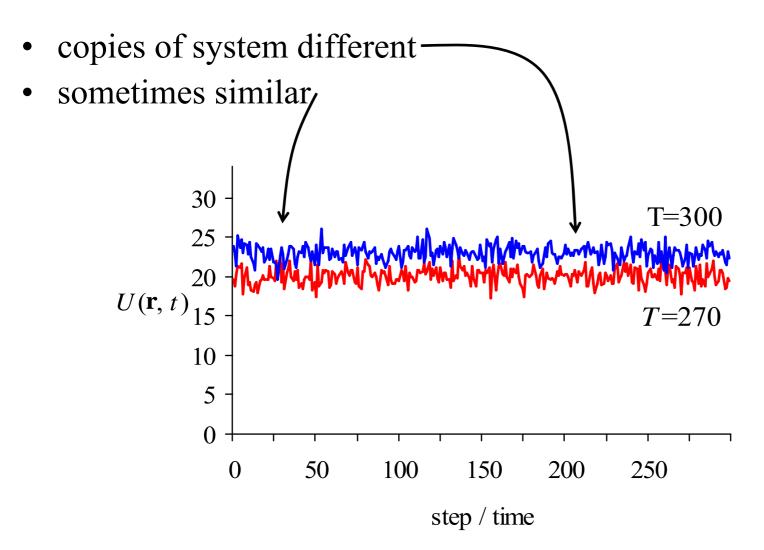
Parallel Tempering / Replica exchange

• two simulations, two temperatures



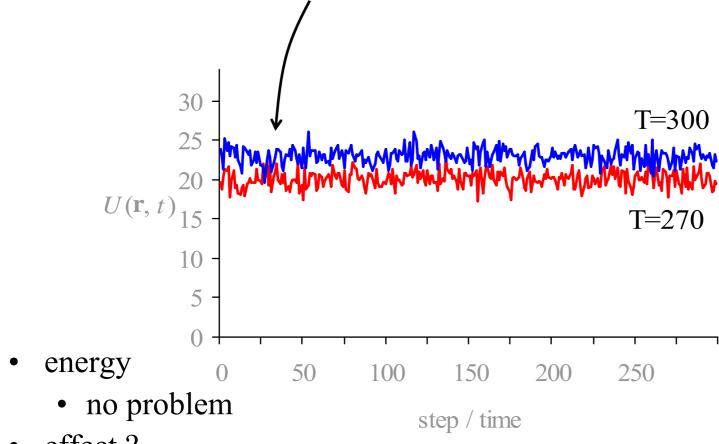
- hotter simulation moves faster, hops over barriers but
 - it does not give $\langle A \rangle$ for desired temperature (270)

Closer temperatures



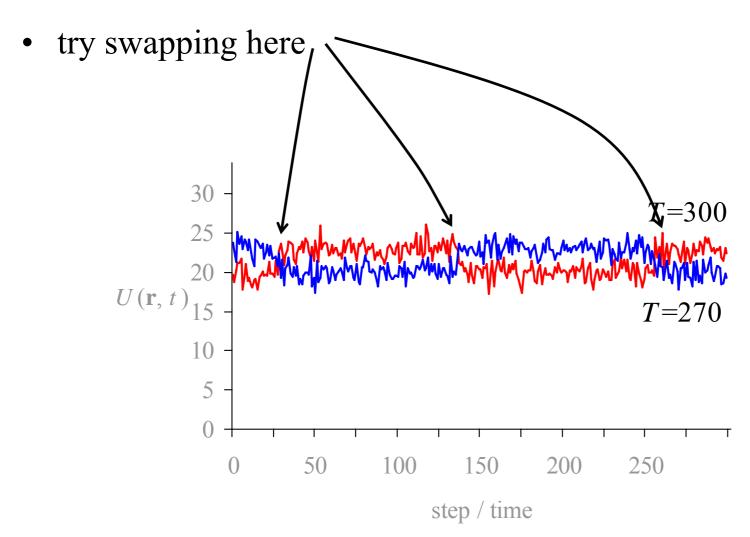
swaps of copies

try swapping here



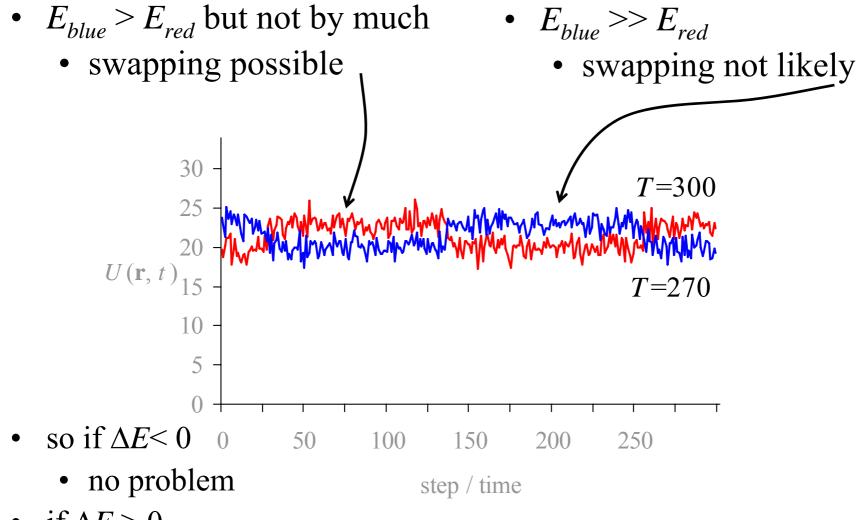
- effect?
 - we have correct energy of red system, but it has been hotter
 - more likely to cross barriers

easy swaps



- if $E_{hot} < E_{cold}$
 - no problem to swap copies

possible swaps

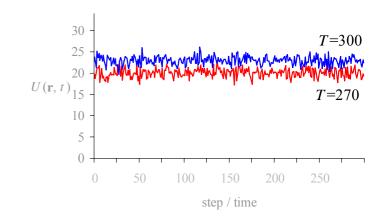


- if $\Delta E > 0$
 - small? possible
 - big? less likely

Exchange Probability

- Question
 - could the blue be part of the red ensemble?
 - could the red be part of the blue ensemble?
- Depends on temperatures, ΔE

$$p_{swap} = e^{\left(\frac{E_j - E_i}{k(T_i - T_j)}\right)}$$



- if $p_{swap} > 1$
 - accept
- else use random number [0..1] and compare with p_{swap}
- consider $E_i \approx E_i$
 - blue bit higher than red (moves likely)
 - blue much higher than red (moves very unlikely)

Implementing

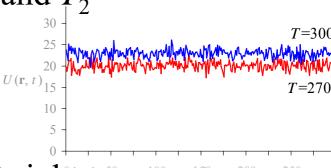
Example

- try 100 moves normal MC of each system
- try 1 exchange / swap of systems
- swap means:

• in MC steps $(e^{-\Delta E/kT})$ change T_1 and T_2

Result

- two simulations
- each has Boltzmann distribution at right temperature
- cooler system has visited high temperatures / moved faster
- generalising

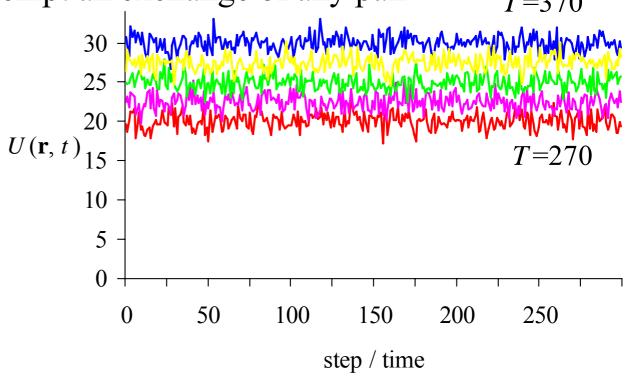


Many replicas

- run many copies, similar temperatures
- every N moves, attempt an exchange of any pair

T = 370

- normally blue would never exchange with red
- now possible in several steps



red simulation is a valid ensemble at T_{red}

Implementation

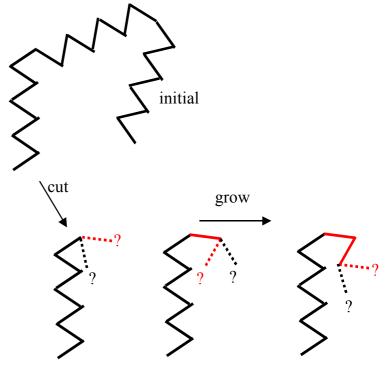
- Any set of exchange attempts OK
 - may not be efficient
- Detail balance preserved
- Easy to implement
- set up *N* simulations at different temperatures
- whenever a swap is successful, set T_i to T_j and T_j to T_i
- alternative perspective
 - like simulated annealing but
 - annealing schedule (cooling) is automatic

Configurational Bias Monte Carlo Rosenbluth sampling

- Many Monte Carlo methods
 - do not take random step
 - find a low energy direction
 - trial move more likely in that direction
 - make acceptance probability less likely
- Result
 - less time spent generating unlikely moves + energy calculation
- Rule
 - must maintain detailed balance
 - must finish with a Boltzmann distribution
- Example discrete system

Discrete Models / Chain growth moves

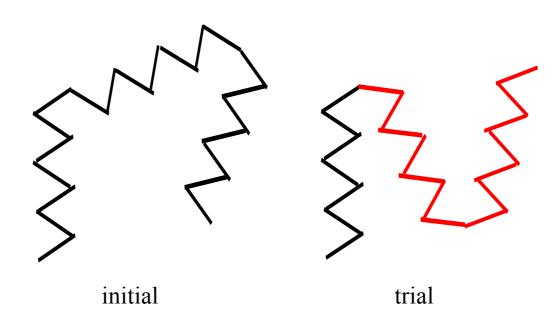
- Lattice / off-lattice often easier to deal with
 - particles only exist in certain places
 - can only occupy certain states
- Off-lattice discrete protein
- Typical moves set
 - pick random site in chain
 - discard one half
 - re-grow each site



- look at new configuration, accept/reject
- big reorganisation possible

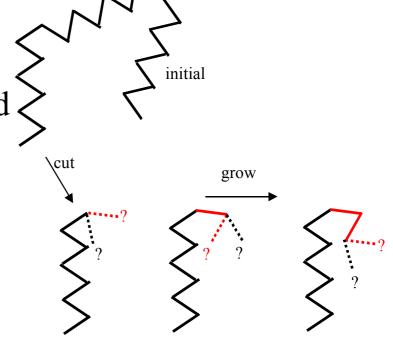
Chain regrowth methods

- moves are big, but
 - in a dense system, most will be rejected
- we have big moves, but consider each step



Looking at sub-moves

- at first step
 - one possible direction is more likely
- what if we move in the more likely region?
 - we will tend to move downhill energetically
 - no Boltzmann distribution
 - move $N_i \pi(i \rightarrow j) \neq N_j \pi(j \rightarrow i)$
 - detailed balance not preserved



Bias

- make downhill moves more likely
 - make them more difficult to accept
- sometimes try uphill moves
- gain
 - fewer attempts at uphill moves
 - keep detailed balance + Boltzmann distribution
- Next step
 - do several biased moves
 - set of (probably) downhill moves

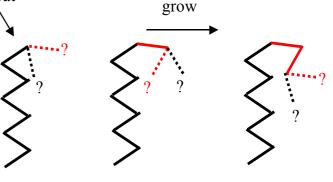
One step

• calculate E_{black} , E_{red} and probabilities \mathcal{E}_{tot}

$$p_{black} = \frac{e^{-E_{black}/kT}}{e^{red,black,...}e^{-E_{i}/kT}}$$

$$\sum_{i=1}^{N_{choices}} p_i = 1$$

- pick a direction according to p_i
- example...



initial

direction picking

- we have three possible directions
- $p_1 = 0.2$, $p_2 = 0.5$, $p_3 = 0.3$ from Boltzmann weights pick random number $0 \le x \le 1$ if $0 \le x < 0.2$ choose (1) elseif $0.2 \le x < 0.7$ choose (2) else choose (3)
- what have we got now? not much yet
- usually choose single steps and preserve Boltzmann distribution

formalism

• where we have N_{choice} possible directions $p_i = \frac{e^{-E_i/kT}}{w}$

$$p_i = \frac{e^{-E_i/kT}}{w}$$

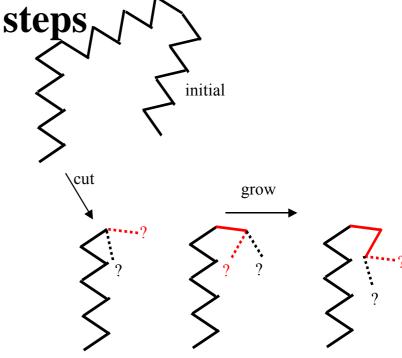
• w will come back in a moment

$$w = \sum_{j=1}^{N_{choice}} e^{-E_j/kT}$$

Several Bias steps

- break chain
- pick first step with bias
- second step with bias
- •
- chain complete

- series of N_{step} steps usually favourable
 - without accept / reject along the way
- how to correct ?
 - introduce "Rosenbluth factor"
 - W_o (old), W_n (new / trial)



Rosenbluth factor

• Rosenbluth factor W_n

$$p_i = \frac{e^{-E_i/kT}}{w}$$

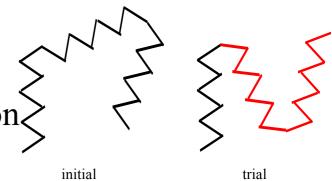
$$W = \prod_{m=1}^{N_{step}} w_m$$

$$w = \sum_{j=1}^{N_{choice}} e^{-E_j/kT}$$

- Rosenbluth factor W_o
 - pretend that the chain was chopped and calculate w_m for each step
- Accept reject
 - if $W_n/W_o > 1$ accept
 - else accept with $p = W_n/W_o$

Net result?

- take N_{step} biased moves
- fix up distribution via acceptance criterion



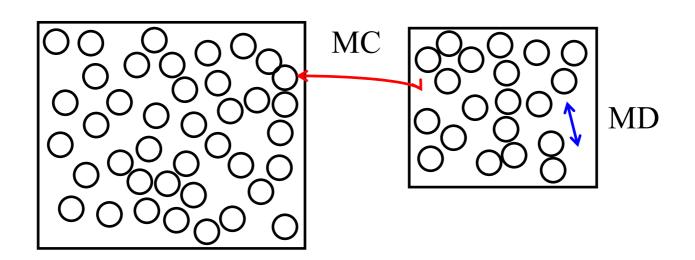
- practical explanation (dense protein)
 - each step we put atoms in a likely place (not on top of other atoms)
 - after N_{steps} we have a chain which is probably physically likely (unlikely to waste time on crazy moves)
- compare with normal Monte Carlo
 - to go from black to red would have required a very specific set of random moves (unlikely to be found)

Who uses configurational biased MC?

- proteins, polymers
- easiest when system is discrete
 - difficult to code in continuous systems
- typical of many methods (introduce bias and correct afterwards)
- putting techniques together

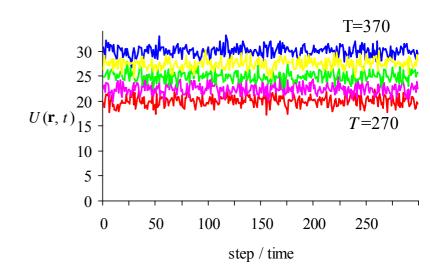
Combinations of techniques

- Goal
 - finish with a Boltzmann distribution
 - dynamics? maybe
- Combinations
 - Molecular dynamics and Monte Carlo?
 - Monte Carlo good for non-physical systems



More combinations

- Replica Exchange method
 - MC or MD
 - both will give ensemble / distribution at desired temperature



- Imagine
 - MC is good for complete re-arrangement of chain
 - MD explores local (nearby) configurations
 - could combine biased MC with MD

Comparison with other methods

- classic minimisation method genetic algorithm
- basic idea
- 100 or 1000 copies of system (protein, travelling salesman routes)
- make 100 copies of system
 while (not happy)
 find 50 worst copies (highest energy) throw away
 copy 50 best
 for (i = 0; i < 50; i++)
 apply random changes, combine copies
- system will gradually improve fittest copies are kept

Comparing to MC

- Methods like genetic algorithm work with unknown distribution
- no theory to fall back on
 - no defined temperature
 - no defined probabilities

Summary of everything

- Methods like molecular dynamics /Monte Carlo
 - infinite number of variations possible / legal
 - best may be system dependent
 - not restricted to molecular / atomic systems
- arbitrary decisions
 - temperature, move types