Molecular evolution

Andrew Torda summer semester 2008, 67.912 Struktur & Simulation

What can we model?

- conformation, dynamics, kinetics, binding, function?
- evolution?

Types

- very coarse (populations) bit like kinetic models for proteins
- molecules
 - RNA and proteins

Some questions

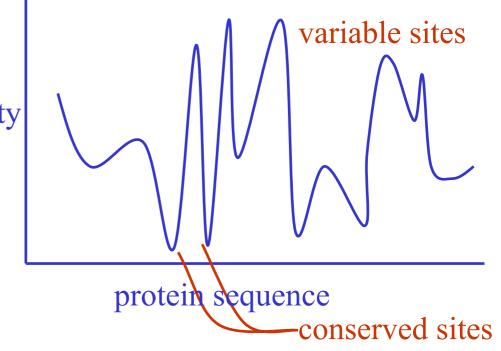
- what drives evolution (Darwin?)
- what "pressures" is a protein under?

Plan

- generalities
- example of unexpected evolutionary pressures (Darwinian)
- neutral networks
- another molecular consequence (not so Darwinian)

calculations which can only be done on idealised systems

Evolution observables


- In the real world, not much
 - phenotypes
 - blue eyes, brown eyes (macroscopic)
 - different proteins (molecular)
 - genotypes (with more effort)
 - population properties
- consequence?
 - mostly look at evolution in terms of pressure on phenotypes
 - classic adaptive Darwinism
- first:
 - a property to be explained later

Sequence variability

- seemingly obvious property
- take family of related sequences
 - see how conserved / variable they are
- variable sites
 - are they unimportant?
- remember this picture!

variability

return to Darwinism

Adaptive Darwinism

- I see a fish which lives behind a rock and eats seaweed
- A mouse is just the right size to squeeze through the hole in my wall
- Voltaire (1694-1778)

```
Master Pangloss taught ..

dass in dieser besten aller möglichen Welten, ...

"Es ist erwiesen" sagte er, "dass die Dinge nicht anders sein können: denn da Alles zu einem Zweck geschaffen worden, ist Alles notwendigerweise zum denkbar besten Zweck in der Welt. Bemerken Sie wohl, dass die Nasen geschaffen wurden, um den Brillen als Unterlage zu dienen, und so tragen wir denn auch Brillen"
```

- Two aspects
 - adaptation to glasses (evolution is directed)
 - best of all possible worlds (we / the world are optimised) of all possible worlds (we / the world are optimised)

Classic Darwinism – molecular level

Obvious pressures

- function
- stability

Less obvious, but simple

• folding

Stability (first version)

I must be stable at room temperature Lots of restrictions

- inside cell \neq outside of cell
- nucleus \neq mitochondrion \neq ...
- trivial? different ionic strength, pH, oxidation / reduction Resistant to chemical challenge
- you can eat
 - acid / base / oxidants / reductants / ...

Some bugs live at

- high salt / temperature
- what do we know?
 - DNA changes (GC / AT ratio)
 - protein consequences not well understood

Proteins are not very stable

more later

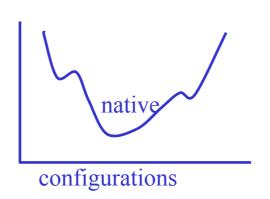
Function

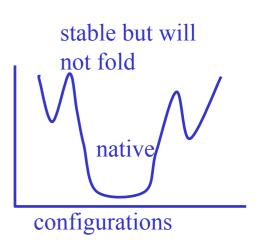
More difficult to explain

- how does a sugar enzyme change to a muscle protein?
- almost must have redundant copies of function
 - if one is broken, you do not die

Consequence

• we are not "optimal"


Experiment


- make "knockout" animals to look at function
- results are often not clear
 - prion proteins (verrückte Kuh Krankheit / Mäuse)

Folding

Subtle phenotype

- we cannot look at a population and see it
- we can simulate it intuitively plausible

More subtle factors

- composition of proteins
 - trp costs far more energy to make than gly or ala
 - this is an observable phenotype
- DNA base pair composition
- much more subtle factors

Other evolutionary pressures

- is it good to be resistant to mutation?
 - what if a gamma ray hits me and my children die?
- more formally
 - a sequence (protein) is more likely to propagate if
 - it can be changed
 - it keeps functioning
- can this be modelled?*

Plan:

- be Darwinian
- (later) show why it is probabilistic (not Darwinian)

Simulating mutation resistance

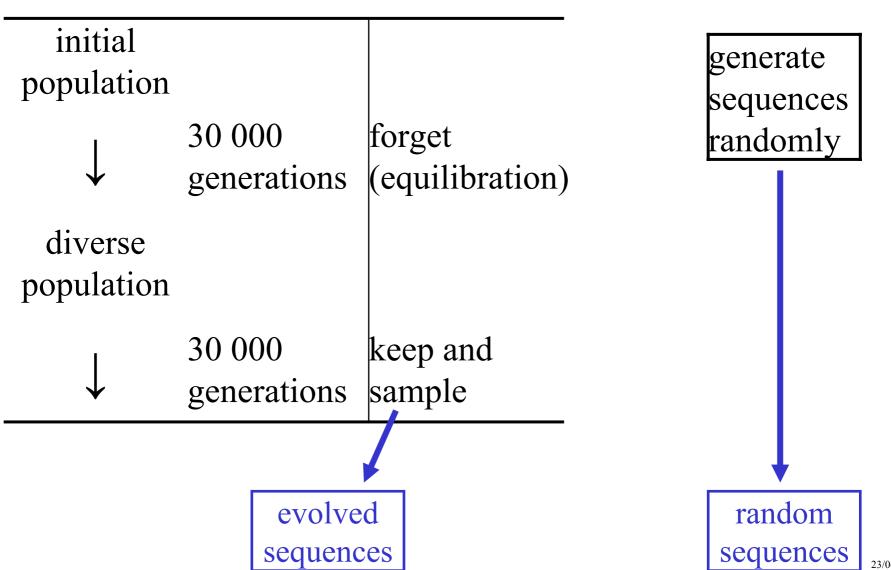
Lattice simulations

- 25 residues, 2 dimensional, compact, 5x5 lattice
- 20 residue types
- 1081 conformations
- remember we can calculate Z and stability
- for any sequence can say
 - will this sequence fold or not ? ΔG_{fold}
 - how different is lowest energy to other energies
- too big to check all sequences

Example calculation

look at differences with and without evolution

Example evolution calculation


Evolution simulation

- apply mutations infrequently / randomly
- sequence must maintain
 - same structure
 - foldability
- for each member of population
 - check lowest energy configuration
 - if it has changed sequence dies
 - check ΔG_{fold}
 - if sequence is not foldable dies
 - of remaining sequences, randomly pick for reproduction

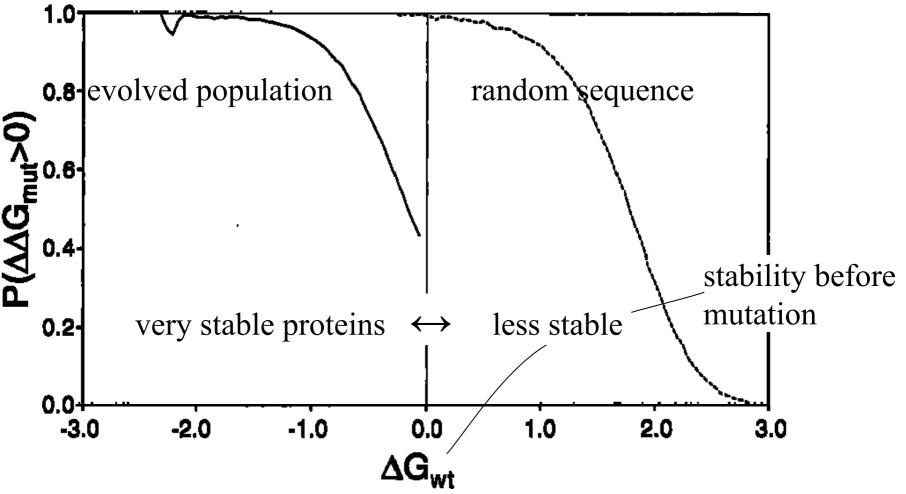
Comparing populations

Take a sequence which folds

• copy 3 000 times – initial population

23/06/2008 [13

Properties to look at

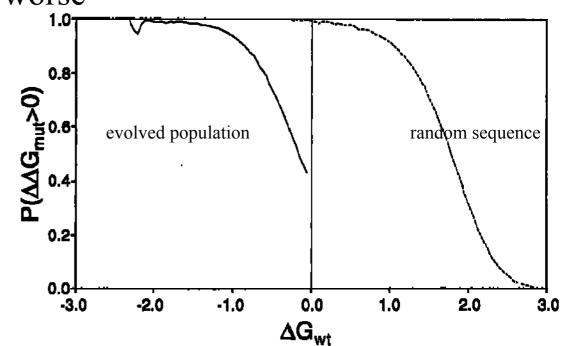

- How often does a mutation make a protein more stable?
- How often does
 - a stable protein become more stable ? (not often)
 - an unstable protein become more stable ? (must be higher)
- Do the fractions differ between
 - random sequences (right hand side previous Folien)
 - evolved sequences (left hand side)
- For some protein we know ΔG
- From simulation look at proteins with some ΔG
 - after mutation get new ΔG
 - look at large number of mutations, get probability $P(\Delta \Delta G > 0)$ of becoming even less stable

What do you expect?

- Evolved sequences must be more stable than random ones
- Will they also be more resistant to mutations?
 - if they were not, they would die

Simulation results

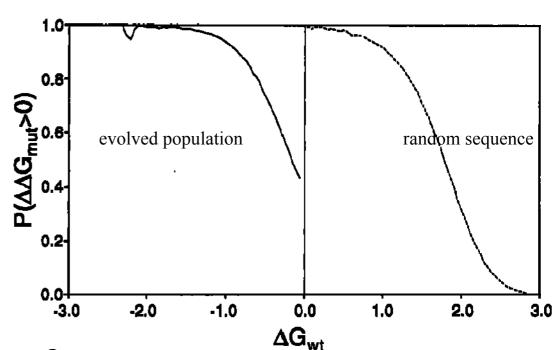
- Take a sequence and have a look
 - when it mutated and survived
 - how often did it become less stable $P(\Delta \Delta G > 0)$?


Interpreting results

random sequence

- unstable $0 < \Delta G > 1$
 - not easy to make more stable
- stable ? $\Delta G < 0$
 - all mutations make it worse

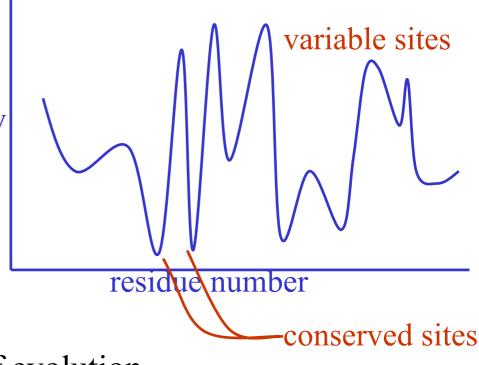
evolved sequence


- very stable?
 - cannot make better
- marginally stable ?
 - mutations often OK

Results explanation

Without explicitly adding idea

- evolution makes
 - more stable proteins
 - proteins which survive mutations



Does this agree with experiment?

- a small amount of the time
 - mutations have no effect
 - make the protein more stable than natural protein

Sequence variability interpretation

- Typical part of sequence analysis
- look at collection of related sequences and see how conserved they are (conservation, profiles, sequence entropy, ..)
- Why are some sites so well conserved?
 - function?
- Why do some sites vary?
 - old view: they do not matter
 - this paper
 - this is a consequence of evolution
 - if they are important and fragile, you die

Subtle evolutionary pressure?

Is this an evolutionary pressure?

- seems like a good idea to not die when mutated
- authors argue that the reason is different
- neutral evolution ...

Neutral evolution

Classical view (selective adaptation) explains life

- we are always trying to adapt to each other, environment ...
- there is some diversity when there is no cost (blue / brown eyes)

Alternative

- most mutations have no effect (neutral)
- if they far outnumber the selected mutations, they will dominate

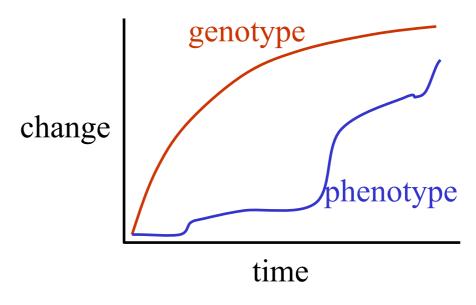
Macroscopic

- brown eyes versus blue not so surprising
- microscopic / molecular ?

Neutral evolution

- consequences?
- predictions?
- predictions at molecular level / simulations

Background of neutral evolution


At molecular level

- DNA level (obvious)
 - 64 codons / 20 amino acids / much redundancy
 - CUG / CUC both ile (+ many more)
 - lots of mutations have no (not much) effect
- Protein
 - bit less clear
 - · we can change amino acids and
 - preserve structure
 - often function
- Net effect
 - we can make many many mutations
 - some do not affect the protein
 - some protein effects are very small

First consequence

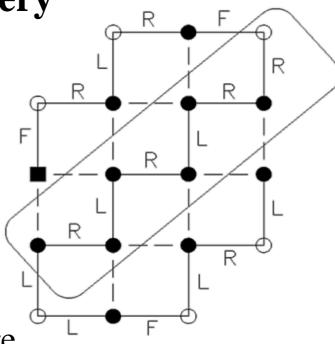
Mutations happen constantly

- the population contains variants which do not cause change
- rarely do we see a real change
- looks plausible
 - different to Darwin?

Simulating at the molecular level

Basic idea

- take a population (maybe 10^3 or as big as possible)
 - make random changes
 - look at consequences
 - kill or reproduce molecules


Most popular

- RNA
 - for a given mutation, can guess at secondary struct
- Proteins
 - lots of lattice calculations

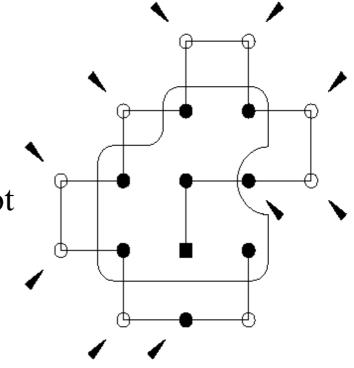
Simulation machinery

HP model in two dimensions

- length 18
 - one can look at all sequences
 - all conformations
 - ... for any sequence
 - can find minimum energy structure
 - for any structure
 - we can find all sequences which have this as minimum energy

Calculations

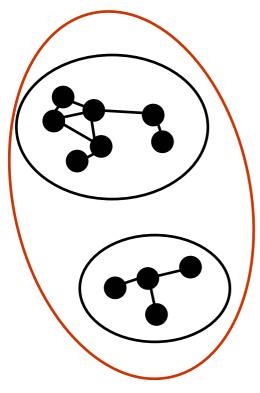
Find popular structures

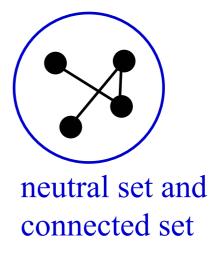

- which is best for many sequences
- collect these sequences
 - neutral set

Neutral mutations

- which of these sequences are connected by a point mutation?
- example
 - HPHPHHH.. and HPHPPHH.. have same ground state
 - they are connected by one change
 - this change does not cost anything in evolution
 - it is "neutral"
 - in pictures...

Neutral mutations

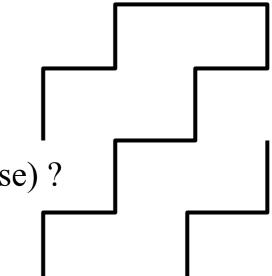

- look at sites which can be changed
 - many possible sequences
- can one mutate each to every other?
 - HPHP**HH**H.. and HPHP**PP**H are not connected
- what can we say about the connected sequences?
 - are all the connected sequences


✓ can be changed

HPHPHHH and HPHPPPH may be a set, but not connected

Connected and non-connected sets

neutral set with two connected sets



• each dot is one protein sequence/structure

Neutral networks

- Sequences which can turn into each other are "neutral network"
- How big are the neutral sets?
 - about ½ have more than 5 sequences
 - most popular has 48 sequences
 - lots of very rare structures
- Are these sets fully connected?

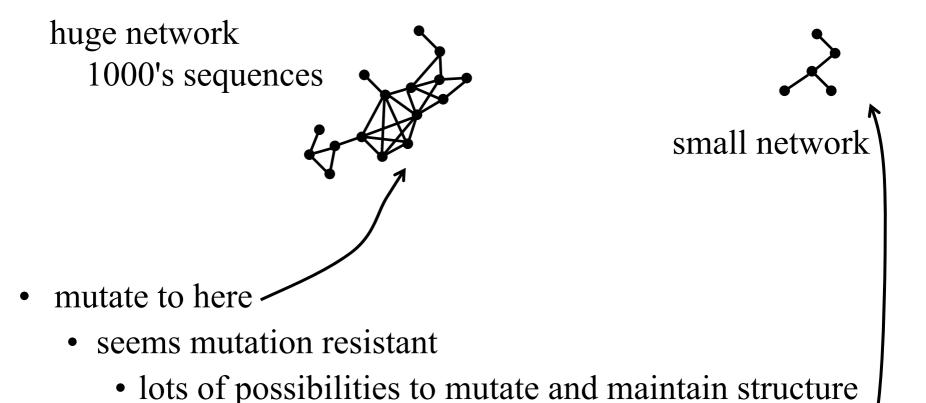
 (can anyone eventually mutate into anyone else)?
 - about 80 % of time

Evolutionary consequences

- a population can quickly spread over a huge number of accessible sequences
- immense variation at molecular level is possible
- Can one hop between different connected networks?
 - in this model not so easily (> 2 mutations)

More interesting consequences

- some structures are hard to find by random moves
- some are very popular
- what does this say about mutation study?


Mutation resistance revisited

Earlier slides

• it seems as if proteins evolve in order to be resistant to mutations (sounds Darwinian)

• Alternative

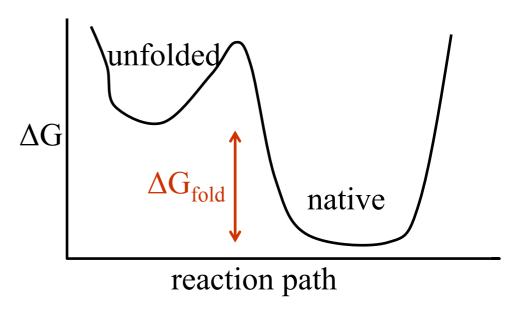
Networks, probabilities, mutation resistance

• more likely to be found (more sequences)

mutate here? likely to die –

non-Darwinian evolution

- if you take random steps between sequences
 - you will more often end up on a "popular" structure
 - mutation resistance
 - looks like it comes from selection
 - may be a consequence of sequence statistics


What does it say about models?

- details (numbers) are not so vital
- problem is made tractable by use of simple model

Protein stability

more work from same group*
Most proteins are NOT very stable

- claims:
 - less stable, more flexible
 - easier to have chemical function

Another model calculation

- 5x5 lattice 1081 conformations
- 20 amino acids
- cannot visit all sequences, can visit all structures
- use a definition of foldable

$$\Delta G_{folding} = E_f + kT \ln \left(Z - \exp \left(-\frac{E_f}{kT} \right) \right)$$

3 simulations

- 1. long walk of one sequence
- 2. population
- 3. random sequences

Sidetrack for arguments

Goldstein's formula

- p_f probability of folded state
- p_u probability of unfolded state
 - probability of all states minus probability of folded state

$$p_f = \frac{\exp\left(\frac{-E_f}{kT}\right)}{Z}$$

$$p_{u} = \frac{\sum_{i} \exp\left(\frac{-E_{i}}{kT}\right) - \exp\left(\frac{-E_{f}}{kT}\right)}{Z}$$

$$\frac{p_f}{p_u} = \frac{\exp\left(\frac{-E_f}{kT}\right)}{\sum_{i} \exp\left(\frac{-E_i}{kT}\right) - \exp\left(\frac{-E_f}{kT}\right)}$$

$$= \frac{\exp\left(\frac{-E_f}{kT}\right)}{Z - \exp\left(\frac{-E_f}{kT}\right)}$$

Getting free energy expression

$$\Delta G = -kT \ln \left(\frac{p_f}{p_u} \right)$$

$$= kT \ln \left(\frac{\exp(-E_f/kT)}{Z - \exp(-E_f/kT)} \right)$$

$$= -kT (\ln \exp(-E_f/kT) + kT \ln(Z - \exp(-E_f/kT)))$$

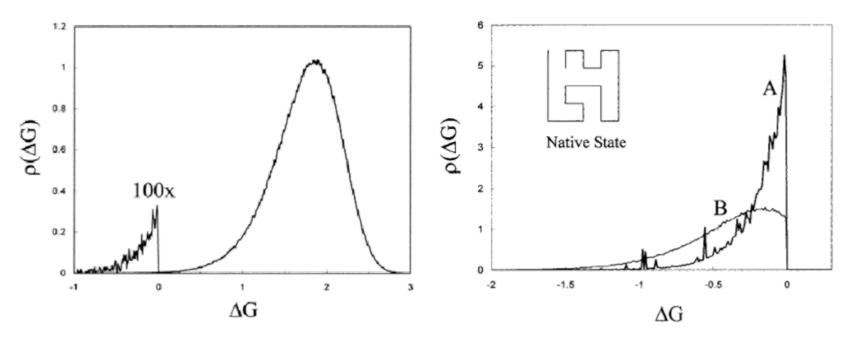
$$= E_f + kT \ln(Z - \exp(-E_f/kT))$$

Simulation (long walk)

- Take viable sequence
- mutate
 - if (foldable)
 - keep
 - else
 - retain old sequence

Simulation (population)

- Take 3 000 identical sequences
- mutate
- calculate $\Delta G_{folding}$ for all members
- kill (remove) non-folders
- copy random survivors to keep population at 3 000

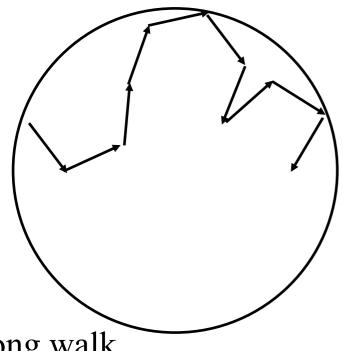

Stability of results

What is the result

- from random sequences ? (left)
- from a long walk (right A)
- from a population (right B)

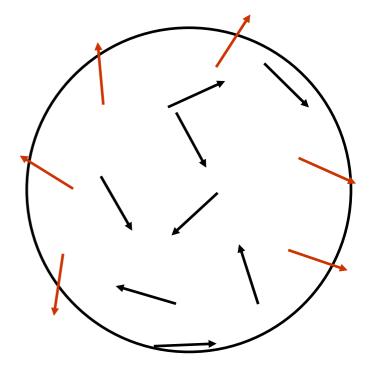
Sequences become more stable

but barely so


Where does the population result come from?

Proteins die if they are unstable

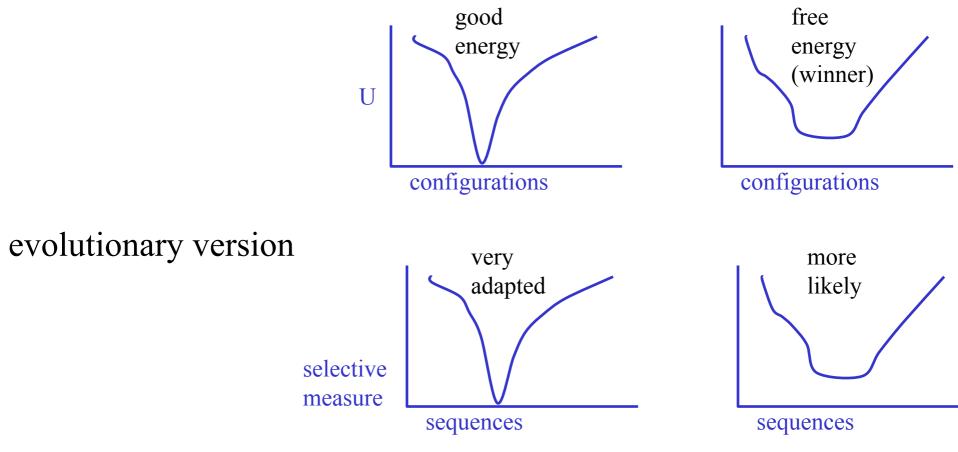
- the population moves to folding sequences (this is selected)
- there is no force to make them more stable
- high dimensional object arguments / population phenomena
 - explain the population result


Walk versus Population

- high dimensional objects
 - high proportion near to surface

long walk

sequences bounce around near surface


population

sequences near surface removed, others reproduce

- Population acts as if there is a sink removing most unstable proteins
- Results give marginally stable proteins
 - no mention of function
 - arguments purely statistical

Analogy evolution and free energy

energy /free energy minima

- evolution is adaptive, but subject to statistical effects
- statistical effects may look like evolutionary pressures (mutation resistance, stability)

Summary

- Neutral evolution began in the late 1960's
- nicest evidence from simple simulations
- Molecular models can be applied in unexpected places
- We interpret the world in terms of observables (numbers, colours, stability, ...)
 - this may be over-interpretation