Administration

- Sprache?
 - zu verhandeln (Englisch, Hochdeutsch, Bayerisch)
- Selection of topics
 - Proteins / DNA / RNA
- Two halves to course
 - week 1-7 Prof Torda (larger molecules)
 - week 8-14 Prof Rarey (smaller molecules / chemoinformatics)

Andrew Torda April 2008

Administration

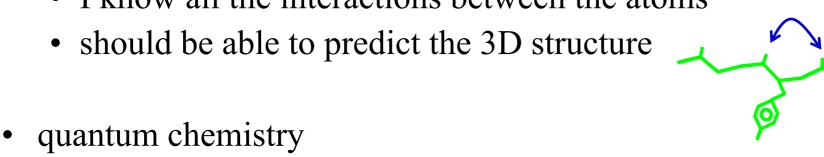
- Who are we? (week 1-7)
 - Andrew Torda
 - + Gundolf Schenk
 - + Thomas Margraf
- Where am I
 - 42838 7331
 - ZBH 1st floor (Bundesstr. 43)
- Background
 - numerical simulations
- Administrative helper
 - Annette Schade

Course Themes

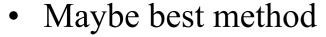
- What we omit
 - genomics, numerical simulations, gene finding, proteomics,...
- What we will do
 - Similarities in sequences
 - finding and assessing similarities
- Different kinds of predictions

Predictions

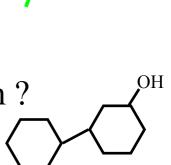
- what shape is this molecule?
- will this small molecule inhibit some enzyme?
- will this molecule be broken down in the body quickly?


Predictions – different approaches

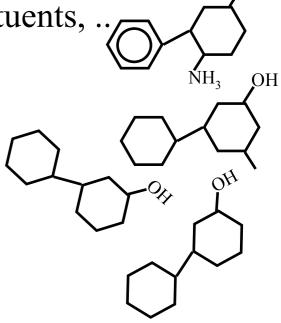
- First principles (physics, chemistry)
- Finding patterns (underlying principles not known)
- Similarity


... explanation

First principles prediction


- protein structure example
 - a protein molecule = set of atoms in space
 - I know all the interactions between the atoms

- I have a model for electron wave functions
- can I predict electron density around each atom?
- predict pK_a for this molecule?
- •



elegant, expensive, needs good models

Finding patterns

- Take known data collect properties, look for correlations
 - look at mol wt, aromatic/aliphatic, substituents, ...
 - for each molecule collect pK_a
 - hope patterns can be found
- gene regulator recognition
 - take known examples
 - look at GC content
 - proximity to protein
 - sizes ...
- field of "data mining", machine learning
- often little understanding of problem / chemistry
- often works

OH

Similarity

- Answer to many questions...
 - DNA
 - is this region coding?
 - where does the reading frame start?
 - is this region involved in regulator binding?
 - protein sequence
 - can one guess the structure
 - is this membrane bound?
 - does it have a certain activity (kinase, transferase, ..)?
 - protein structure (maybe from structural genomics)
 - what is a likely function?
 - from proteomics, we know the N-terminal 6 residues
 - what protein could it be?

Prediction by similarity

- For some examples
 - solve structure of a protein
 - find DNA which binds to regulators
 - measure that RNA has enzymatic activity

slow, expensive must be done

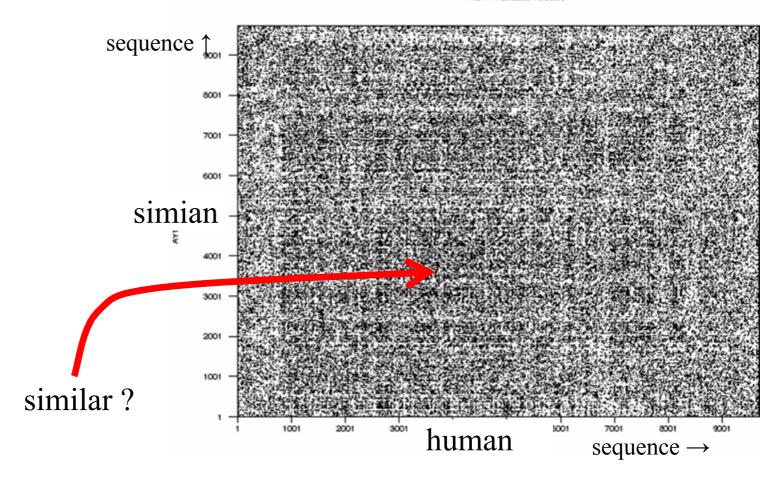
- For some queries / your sequence
 - is your protein sequence similar to a known structure?
 - is your stretch of DNA similar to a known regulatory region?
 - is your RNA similar to some RNAzyme?
- why is experiment it so slow and expensive?

Real experiments

- very problem specific
- DNA to find function? make knockouts
 - essential (bad news)
 - involved in regulation still more measurements
 - involved in some pathway
- Protein usually has to be cloned, expressed, ...
 - function in vitro, in vivo
 - structure from NMR, crystallography
- RNA
 - how do you show it is involved in regulation (assays?)
 - how can you show it is a riboswitch?
 - structures difficult

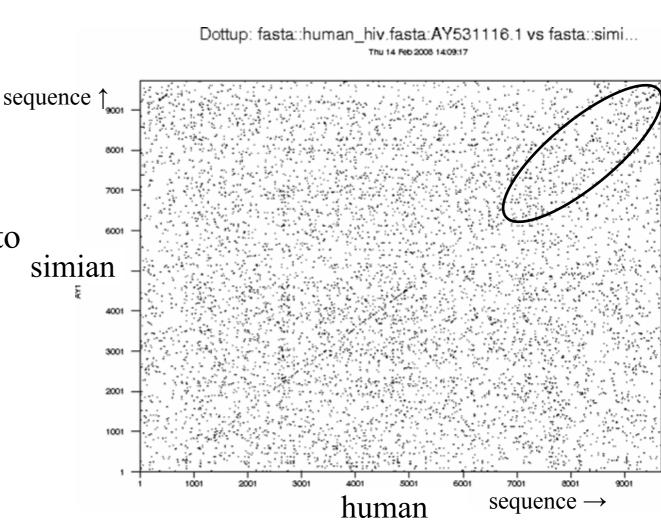
Similarity in sequences

- Protein / nucleotide
 - same ideas, differences later
- Questions
 - are two sequences similar?
 - suspected similarity
 - how reliable is it?
 - detailed alignments (modelling, important residues, ..)
- Plan
 - generalities
 - alignment methods
 - DNA versions
 - Protein versions
 - differences


Alignments and Similarities

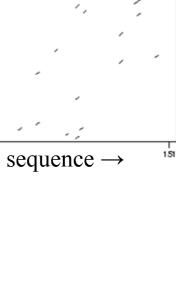
- Problem
- . . A C A C T G A C T A . .
- A T T G A G T A . . .
- 1 0 1 1 1 0 1 1 . .
- 4 of 8 positions match
- implicit
 - I have already moved second sequence over the first
- gaps
- . . A C A C T T G A C T A . . .
- A T T G A G T A . . .
- 1 0 1 1 1 0 1 1 . . .
- alignment not so obvious (gaps anywhere)
 - quick look

dot plot

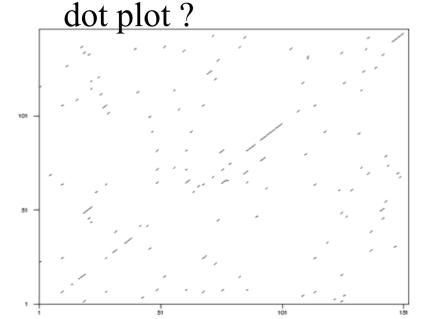

human and simian HIV

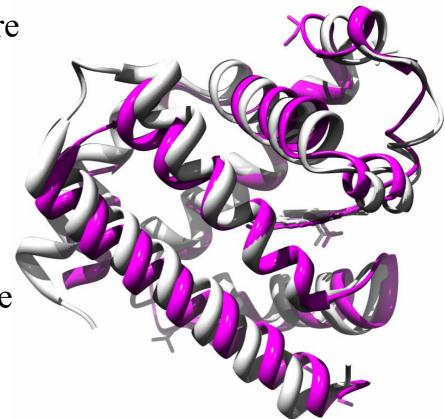
Dottup: fasta::human_hiv.fasta:AY531116.1 vs fasta::simi...

dot plot filtered


- similarity up to about 5200
- circled region ?
 - not so clear
- easy for a human to recognise
- not so easy to automate
- worse case ...
 - two protein sequences

protein dot plot


sequence 1


- 2 proteins
 - 2nrl, 2o58
 - tuna / horse myoglobin
- without peeking
 - are they really similar?
 - how real is the diagonal?
- what is the identity?
 - $\approx 45 \%$
- how similar are these two proteins?

If one knew the structure..

- exactly the same proteins as before
- would you have recognised this from dotplot?
- There is an alignment implied
 - could you have seen it from the

- look at residue 60 in dot plot
 - aligned residue not clear
- look in structure
 - aligned residues clear

Alignment methods

best alignment not obvious

```
. . . C G A T C C - T C C T C . . .
```

• 6 matches or

- also 6 matches
- can we invent some rules to say which is best?

Simple scoring

• For two sequences of length 10, how many alignments could I generate?

• • •

- then with multiple gaps ... combinatorial explosion
- do not tackle the problem directly

Mission

- For DNA, protein, RNA
 - develop some scoring scheme
 - maximize matches and similarities
- algorithm
 - allow some gaps, not too many
 - must be much faster than brute force
- What is coming
 - simple scoring –DNA
 - full alignment algorithm (Needleman and Wunsch)
 - better scoring proteins

Scoring for DNA

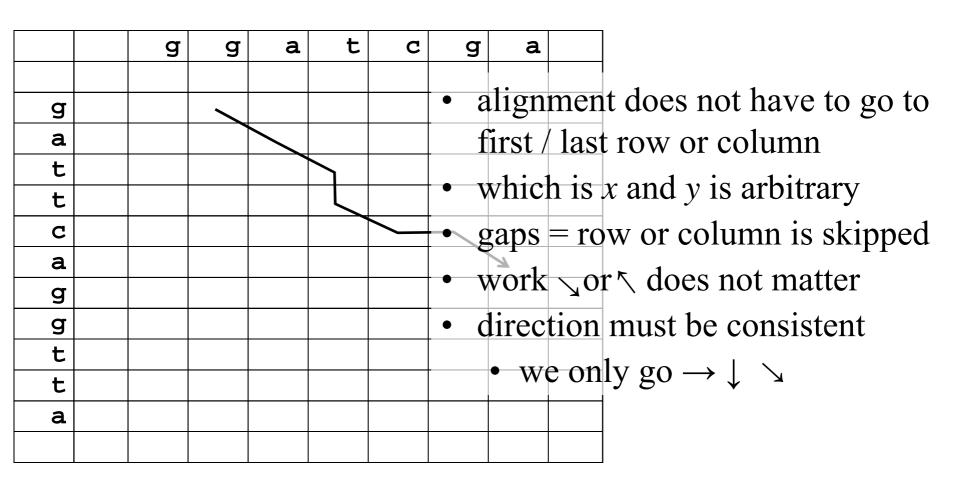
- Sensible scheme
 - matched pairs 2
 - mismatch -3
 - gaps -2

- more sophisticated..
 - gap opening costs -2
 - gap widening costs -1

• so
$$cost = cost_{open} + (n_{gap} - 1)cost_{widen}$$

Representing alignments

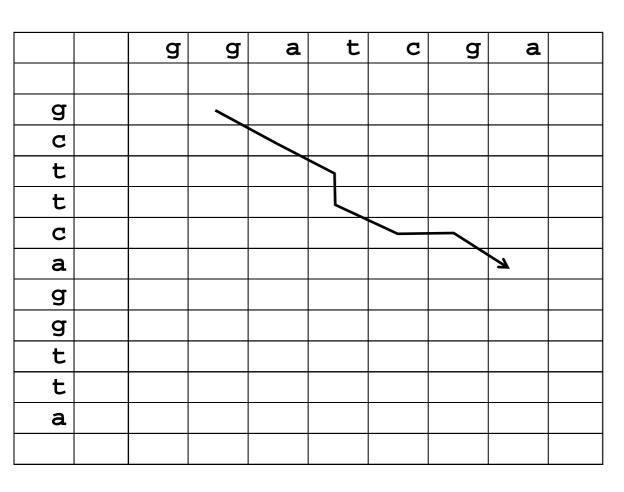
• sequences Gattcaggtta and ggatcga



would mean

GGAT-CGA----GATTC-AGGTTA

• notes...


Representing alignments

make sure this is clear

Representing alignments with a mismatch

• sequences GCTTCAGGTTA and GGATCGA

would mean

GGAT-CGA----GCTTC-AGGTTA

Calculating alignment - steps

Needleman and Wunsch algorithm

- 1. fill score matrix
- 2. find best score possible in each cell
- 3. traceback

fill score matrix

- For convenience, add some zeroes to the ends
- Add in match, mismatch scores

		g	g	a	t	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0								0
a	0								0
t	0								0
t	0								0
C	0								0
a	0								0
g	0								0
g	0								0
t	0								0
t	0								0
a	0								0
	0	0	0	0	0	0	0	0	0

Mission

- find path through this matrix with best score
- account for gaps

Summing the elements

- start at top left
- move right, then next line
- at each cell
 - find best score it could possibly have

		g	g	а	ט	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	6	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	6	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

Diagonal (no gaps)

for each cell, 3 possible scores

- 1. diagonal (no gap)
- 2. best from preceding column
- 3 best from preceding row

		g	g	a	ħ	U	Ŋ	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2,	_3	-3	-3	2	-3	0
a	0	-3	-1	71	-3	-4	- 5	4	0
t	0	-3	-3	_ ლ	9	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	- 5	- 5	-2	6	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

GAT

GAT

GG

GG

preceding row (gap)

for each cell, 3 possible scores

- 1. diagonal (no gap)
- 2. best from preceding row
- 3. best from preceding column

		g	g	a	t	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	6	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	6	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	3 _	4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

GAT G-T

preceding column (gap)

for each cell, 3 possible scores

- 1. diagonal (no gap)
- 2. best from preceding row
- 3 best from preceding column

		g	g	a	ħ	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	₁ 6	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	9	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

T-C

The order of cells

- start at top left
- every cell has best score considering all possible routes
- at end, highest score is best path

		Ф	Ø	а	t	Ω	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	- 3	-3	6	-1	-2	-3	4
t	0						-		
С	0								
a	0								
g	0								
g	0								
t	0								
t	0								
a	0								
	0								

 would also work if we went left and up

Reading the alignment

- find highest scoring cell (last row or column)
- how did we reach this cell?
 - how did we reach preceding cell?
 - •

		g	g	a	ħ	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	4	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	9	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	6.	0	-2	1
a	0	-3	-5	-6	-3	0	ω /	رم/	3
g	0	2	0	-6	-4	-1	6	0	\ 6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

GGAT-CGA
-GATTC-AGGTTA

Trick with traceback

- for each cell
 - how did we reach it? What was the preceding cell?

		g	g	a	ц	C	Ф	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	A	_3	-4	-5	4	0
t	0	-3	-3	-3	6	-1	-2	-3	4
t	0	-3	-4	-4	4	<u>3</u>	1	0	2
С	0	-3	-5	-5	-2	6.	0	-2	1
a	0	-3	-5	-6	-3	0	3	γ,	3
	_	_							
g	0	2	0	-6	-4	-1	6	6	/ 6
	0		0 4	-6 -3	-4 -4	-1 -2	6 5	3	\ 6 4
g		2							
a	0	2	4	-3	-4	-2	5	3	4
g g t	0	2 2 -3	4 -1	-3 1	-4 4	-2 -2	5 -1	3	3
g g t	0 0	2 2 -3 -3	4 -1 -3	-3 1 -1	-4 4 3	-2 -2 1	5 -1 -1	3 2 0	4 3 2

GGAT-CGA
-GATTC-AGGTTA

Summary (Needleman and Wunsch)

- Alignments are paths through the matrix
- There is an astronomical number of possibilities (with gaps)
- This algorithm has visited all of them and found best
- allows for gap costs of form $cost = cost_{open} + (n_{gap} 1)cost_{widen}$
- best or only method? wait..

Cost

- pretend both sequences are length *n*
- we have to visit n^2 cells in matrix
 - each time we have to look at a row or column of length $\approx n$
- total cost n^3 or worst cost $O(n^3)$
 - remember this for later

Smith and Waterman version

- So far: global alignments
 - best match, covers as much as possible
- Imagine 3 domain proteins..

```
ABCDEABCDEABCDE
QRSTUVBCDEQRSTU
```

• Want to see ...

```
ABCDEABCDEABCDE
```

QRSTUVBCDEQRSTU not worth trying to align everything

- Use "Smith and Waterman" method
 - scoring scheme: matches positive, mismatches negative
 - during traceback
 - do not just look for max score
 - start with positive score
 - stop if score goes negative
- result: "local alignments" often most useful

Other alignment algorithms

- Needleman and Wunsch / Smith Waterman
 - for given problem optimal results
 - allow fancy gap penalties
 - cost $O(n^3)$

Other methods

• $O(n^2)$ – very small limitation on gaps

Faster

•

Faster Seeded Methods

blast, fasta, more

- seeded
 - idea: use seeds / fragments of length k
 - 11-28 for DNA
 - 2 to 3 for protein
 - look for exact matches of query words in database
 - extend if found
 - time depends mainly length O(n) most of the time no matches
 - slow extension when a match is found
- seed size
 - very small = lots of unimportant matches (slow)
 - too big may miss a match if there are too many changes

Fast versus slow

- 2 sequences (protein or DNA)
 - time not an issue
 - 1000 alignments? Time still not an issue
 - $10^3 \times 10^3$ alignments? Your decision
- Databases
 - non-redundant protein sequence database $\approx 6 \frac{1}{2} \times 10^6$ sequences
 - must be fast
 - maybe occasionally miss a word
 - alignments may not be optimal

Problems so far

- We can align DNA sequences maybe proteins
- how biological are the alignments, gaps and costs?
- Coding versus non-coding DNA
 - 3 base pairs →1 residue

```
ACAG... 100's bases ... CGA...
```

```
AC-G... 100's bases ... CGA ... one base deletion
```

- 100's bases are shifted amino acids in protein all wrong
- non-coding region (binding / regulation / tRNA / rRNA...
 - may not be so bad
- General problem degeneracy ...

Degeneracy and Scoring

- CCU, CCC, CCA, CCG are all proline (3rd position degenerate)
- CCC→CCA no problem
- CCC→ACC pro → ala (you die)
 - exactly the same mutation at DNA level $(C \rightarrow A)$
- our scoring scheme does not know about this
- rule
 - some mutations will have no effect
 - some are drastic
 - usually the third base in each codon is least important
- can we do better?

Scoring protein alignments

- two aspects
 - forget DNA
 - account for amino acid similarity
- instead of DNA work directly with protein sequences
- if our DNA is coding easy to say
 - CCUUCUUAU.. is pro-ser-tyr...
 - immediate gain
 - CCC→CCA or similar will not be seen
 - more subtle gain

Amino acid similarities

• asp and glu $H_3\bar{N}-C-H$ $H_3\bar{N}-C-H$ CH_2 CH_2 CH_2

• think of leu and ile

$$COO$$
 $COO^ H_0\dot{N} O H$ $H_3\dot{N} - C - H$
 CH_2 $H - C - CH$
 CH_2 CH_3 CH_3

- many more similar amino acids
- glu →asp mutation, does it matter? sometimes not
- trp \rightarrow asp, big hydrophobic to small polar? usually bad news
- relevance to alignments

Why we need better protein scoring

ANDREWANDRWANDRWW aligned to QNDRDW

```
ANDREWANDRWANDRWW
QNDRDW------
```

```
ANDREWANDR-WANDRWW
----QNDRDW-----
```

- one of which is biologically more likely $(E \rightarrow D)$
- how would we do it numerically?

Substitution matrices

- Earlier in DNA
 - match = 2
 - mismatch = -3
- We want a matrix that says

	D	Е	W	•••
D	10	5	-5	
E	5	10	-5	
W	-5	-5	15	
•••				

• A full matrix..

	A	C	G	T
A	2	-3	-3	-3
C	-3	2	-3	-3
G	-3	-3	2	-3
T	-3	-3	-3	2

A serious protein similarity matrix

• blosum62:

```
0 -2 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2
I -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1
                           2
F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0
P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2
  0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2
```

- some features
 - diagonal
 - similar
 - different

Using the score matrix

- Algorithm (global alignment, local, fast, ...)
 - unchanged
 - only scoring changes
 - appropriate gap penalties
- If possible use the protein sequence rather than DNA
 - not all DNA codes for proteins
 - regulators, tRNA, catalytic RNA, sRNA, ...
 - not possible for genomic comparisons
- automatically includes codons, amino acid similarity, ..
- where does this kind of matrix come from?

Substitution Matrices

- Lots exist
 - PAM point accepted mutations
 - BLOSUM blocks substitution matrix
- Philosophy
 - if two amino acids are similar, we will see mutations often
- To quantify this..
- Take some very similar proteins (lots)

parts of some haemoglobins

HAHKT.RVGPVNFKT.T.SHCT.T.VTT.AAHT.PAEFTPAVHAST.DKFT.ASVSTVT.TSK HAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSK HAHKTRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK HAHKT.RVDAVNFKT.T.SHCT.T.VTT.AAHT.PAEFTPAVHAST.DKFT.ASVSTVT.TSK HAHKT.RVDPVNFKT.T.SHCT.T.VTT.AAHT.PAEFTPAVHAST.DKFT.ASVSTVT.TSK HAHKTRVDPVNFKTTSHCTTVTTAAHTPAEFTPAVHASTDKFTASVSTVTTSK HAHKT.RVDPVNFKT.T.SHCT.T.VTT.AAHT.PAEFTPAVHAST.DKFT.ASVSTVT.TSK HAHKT.RVDPVNFKT.T.SHCT.T.VTT.AAHT.PAEFTPAVHAST.DKFT.ASVSTVT.TSK HAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK HAHKI.RVDPVNFKI.I.SHCI.I.VTI.AAHI.PAEFTPAVHASI.DKFI.ASVSTVI.TSK HAHKTRVDPVNFKTTSHCTTSTTAVHTPNDFTPAVHASTDKFTSSVSTVTTSK HAHKTRVDPVNFKTTSHCTTSTTAVHTPNDFTPAVHASTDKFTSSVSTVTTSK HAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSK HAHKTRVDPVNFKTTSHCTTSTTAVHTPNDFTPAVHASTDKFTSSVSTVTTSK HAHKI.RVDPVNFKI.I.SHCI.I.VTI.AAHHPDDFNPSVHASI.DKFI.ANVSTVI.TSK HAHKLRVNPVNFKLLSHSLLVTLASHLPTNFTPAVHANLNKFLANDSTVLTSK HAYKI.RVDPVNFKI.I.SHCI.I.VTI.ACHHPTEFTPAVHASI.DKFFTAVSTVI.TSK HAOKLRVDPVNFKFLGHCFLVVVAIHHPSALTPEVHASLDKFLCAVGTVLTAK HAOKLRVDPVNFKFLGHCFLVVVAIHHPSALTAEVHASLDKFLCAVGTVLTAK HAOKLRVDPVNFKFLGHCFLVVVAIHHPSALTAEVHASLDKFLCAVGTVLTAK HAOKLRVDPVNFKLLGOCFLVVVAIHNPSALTPEAHASLDKFLCAVGLVLTAK HAYNLRVDPVNFKLLSQCIQVVLAVHMGKDYTPEVHAAFDKFLSAVSAVLAEK HAYNLRVDPVNFKLLSHCFOVVLGAHLGREYTPOVOVAYDKFLAAVSAVLAEK HAYILRVDPVNFKLLSHCLLVTLAARFPADFTAEAHAAWDKFLSVVSSVLTEK

parts of some haemoglobins

- HAHKLRVGPVNFKLLSHCLLVTLAAHT.PAFFTPAVHAST.DKFT.ASVSTVT.TSK
- HAHKLRVDPVNFKLLSHCLLSTL/
- HAHKLRVDPVNFKLLSHCLLVTL?
- HAHKLRVDAVNFKLLSHCLLVTL?
- HAHKLRVDPVNFKLLSHCLLVTL?
- HAHKLRVDPVNFKLLSHCLLVTLA
- HAHKLRVDPVNFKLLSHCLLVTL?
- HAHKLRVDPVNFKLLSHCLLVTL/
- HAHKLRVDPVNFKLLSHCLLVTLA
- HAHKLRVDPVNFKLLSHCLLVTL?
- HAHKLRVDPVNFKLLSHCLLSTL?
- HAHKLRVDPVNFKLLSHCLLSTLA
- HAHKLRVDPVNFKLLSHCLLSTL?
- HAHKLRVDPVNFKLLSHCLLSTL?
- HAHKLRVDPVNFKLLSHCLLVTL/
- HAHKLRVNPVNFKLLSHSLLVTLA
- HAYKLRVDPVNFKLLSHCLLVTLA
- HAOKLRVDPVNFKFLGHCFLVVV/
- HAQKLRVDPVNFKFLGHCFLVVV
- HAQKLRVDPVNFKFLGHCFLVVV/
- HAQKLRVDPVNFKLLGQCFLVVVAIHNPSALTPEAHASLDKFLCAVGLVLTAK
- HAYNLRVDPVNFKLLSQCIQVVLAVHMGKDYTPEVHAAFDKFLSAVSAVLAEK
- HAYNLRVDPVNFKLLSHCFQVVLGAHLGREYTPQVQVAYDKFLAAVSAVLAEK
- HAYLLRVDPVNFKLLSHCLLVTLAARFPADFTAEAHAAWDKFLSVVSSVLTEK

- consider an example column
 - how many pairs do we have?
 - 1-2, 1-3, ... 2-3, 2-4, ... get n_{total}
 - count $n_{\rm HH}$, $n_{\rm HY}$, ...
 - $p_{\rm HH} = n_{\rm HH}/n_{total}$ would be probability that H is conserved (or another amino acid)
 - $p_{AB}=n_{AB}/n_{total}$ would be probability that A and B mutate to another

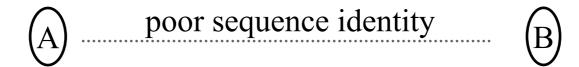
Calculating a substitution matrix

- We have all the probabilities p_{AB} and p_{AA}
- next step matrix element AB is $log_2(p_{AB})$ why log_2 ?
- is my example enough?
 - needs much more data so as to get good probabilities

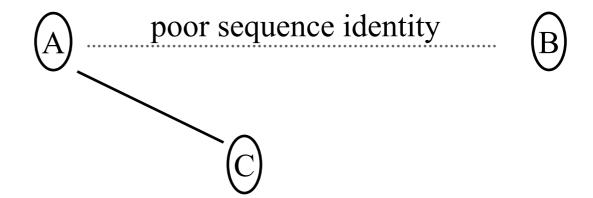
Different matrices

- Lots of details PAM vs BLOSUM vs ... (not important)
- Degree of homology
 - if two sequences are very similar most residues not changed
 - longer evolutionary time many things change

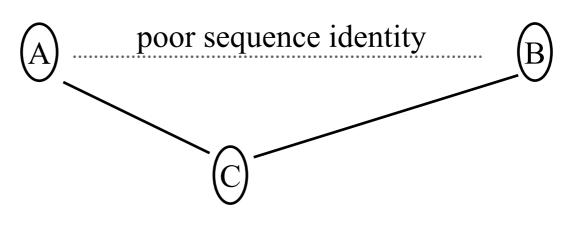
Longer evolutionary times


- so far, probability of one mutation $A \rightarrow B$
- longer evolutionary time
- $D \rightarrow E \rightarrow D \rightarrow W \rightarrow D \dots$
 - multiple mutations
 - our matrix should reflect this
 - probability of conservation is lower (diagonal elements)
 - all off-diagonal elements will be bigger
- more formally long time p is $p \times p \times p \times \dots$
- account for this?
 - take matrix (like blosum) and do matrix multiplication
 - M × M × M ×...
 - result: a set of matrices
 - PAM10, PAM20, ...
 - Blosum62, blosum80, ...

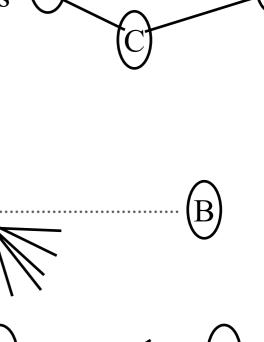
Are these matrices useful?


- In principle, yes
 - looking for similar proteins use blosum80
 - more remote? use blosum62
 - •
- in practice?
- better way to find remote homologues
- huge advance in practical terms

iterated searches (psi-blast)


• You search with protein A and find a very remote protein B

but there another protein C



- searching with C
- the original AB relation is believable
- how to automate this?

iterated searches (psi-blast)

- Searching with "A" finds lots of homologues
 - cannot start a search with each
- alternative
 - find all the homologues to A
 - build an average sequence (profile)
 - from this profile repeat search
 - build new average / repeat
- result
 - at each step
 - include reliable homologues
 - eventually $A \rightarrow B$ may be found

iterated searches (psi-blast)

- in practice
- really only one program (+ web page) ncbi blast / psi-blast
- most significant advance in finding remote homologues in a decade

sequence identity / similarity / significance

Significance

- I find a homologue is it evolutionarily related or just noise?
 - probability estimations later
- how important is 10% sequence identity ? 90 % ?
- is 25 % identity in DNA as useful as in a protein?
- First principles DNA
- what would you expect by chance?
- GGATCGA GATTCAGGTTA
- At each position ½ chance of a match
 - average 25 % sequence identity with random DNA
 - wrong

Naïve identity expectation – base usage

- Two problems uneven character frequency, gaps Character frequency
- what if I have a two letter alphabet? GCGCGC
 - average sequence identity 50 %

```
GCGCGCGCGCGCGCGCGCGC 50 %

GCGACGCGTCGCGCGTTCGCGC < 50 %

GCGACACGTCGTGAGTTCTTGC nearly 25 %
```

- as the base usage becomes less even
 - random sequence identity becomes bigger
- how significant?
 - malaria is about ½ GC (not ½)
 - GC differs between organisms, coding/non-coding
- even with random DNA, identity will be > 25 %

Naïve identity expectation - gaps

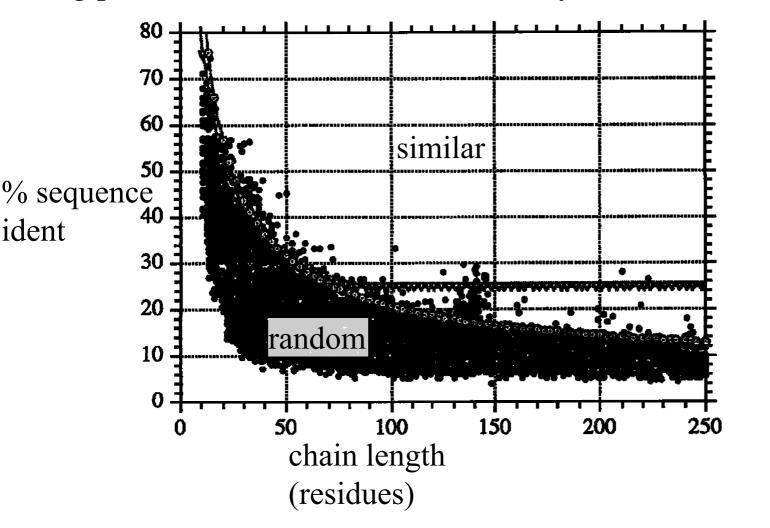
- ungapped: 2 matches from 9 aligned (22 %)
 GGATCGCAC
 GACTGAGGTTA
- one gap: 3 matches 8 aligned (38 %)

 GGATCGCAC

 GACT-GAGGTTA
- more gaps: 4 matches from 6 positions (50 %)

 GGATCGCAC

 GACT-G-AGGTTA
- more gaps: 5 matches from 6 positions (83 %)
 GGATC-GCAC
 G-A-CTG-AGGTTA
- the more gaps one allows the higher the identity
- cheating? One can make score arbitrarily good


Protein – random matches

•	20 amino acids		%
•	naïve expectation – 5 %	ala	8.4
•	proteins are not like a 20 character alphabet:	leu	8.3
	 varies between organisms 	gly	7.8
	 varies between cell compartments, 	trp	1.5
	soluble, membrane bound	cys	1.7
•	practical result - random sequences, realistic gaps	J	
	 20 to 25 % identity by chance 		

• depends on length..

protein size and identity

- small proteins need 30 % to believe they are related
- big proteins < 20 %, almost certainly related

Order and summary

- Alignments and searching fast / slow, approximate / accurate
- What do you want? Application
- What results are available?
- Always try to use the best / slowest method which
 - works
 - computationally feasible

Desperation case

- gene + protein is implicated in disease / pathway
- few sequence homologues, but nothing is known about them
- no structures known for homologues
- try to find even remote homologues
- functions of homologues? enzymes? regulatory?..?
- accept that
 - alignments may not be perfect
 - function of remote homologues may have changed
 - no idea about structure
- use fast database searches, iterative searches

Less desperate

- sequence has many close and remote homologues
- homologues are chemically characterized, functions known
- structures of close homologues known
- mutation studies of homologues
- alignments are reliable
- model can be built from related structures
- one can try to guess at inhibitors (enzymes) / guess binding sites (regulators) / ligands
- use simple database searches to find homologues
- use slow, accurate methods to get good alignments
- next .. more on applications of alignments