Protein structures and comparisons

Andrew Torda 67.937 Bioinformatik, Mai 2008

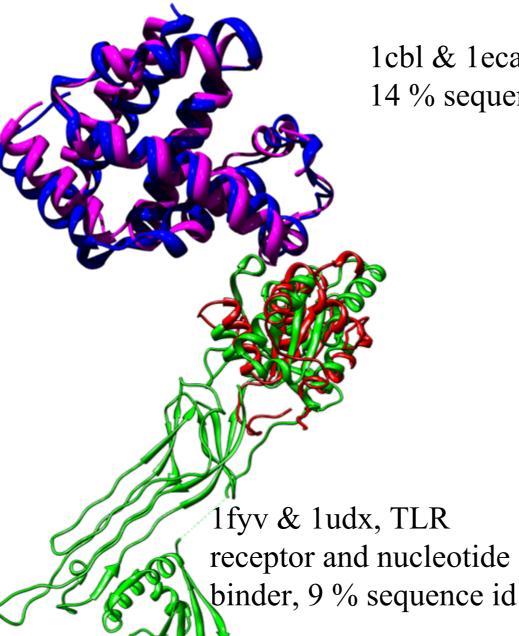
Ultimate aim

- how to find out the most about a protein
- what you can get from sequence and structure information

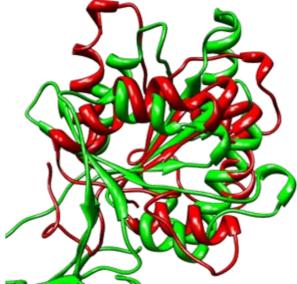
On the way..

- remote similarities between proteins
- sequence versus structural similarity
- Detour
 - protein coordinates representation, accuracy
- measures for similarity of coordinates
- Later
 - classifications of proteins

Sequence and structure similarity


Claim from before

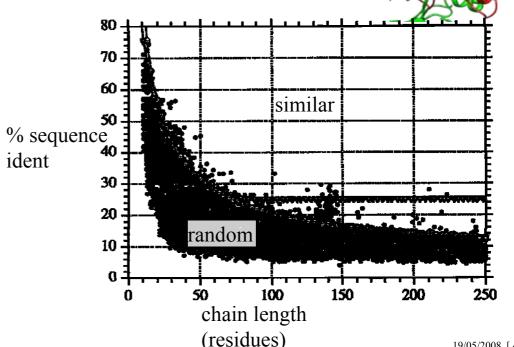
• if two sequences are similar – they are related – structures are similar


Question

• if two sequences are different - are their structures different ?

Remote similarities

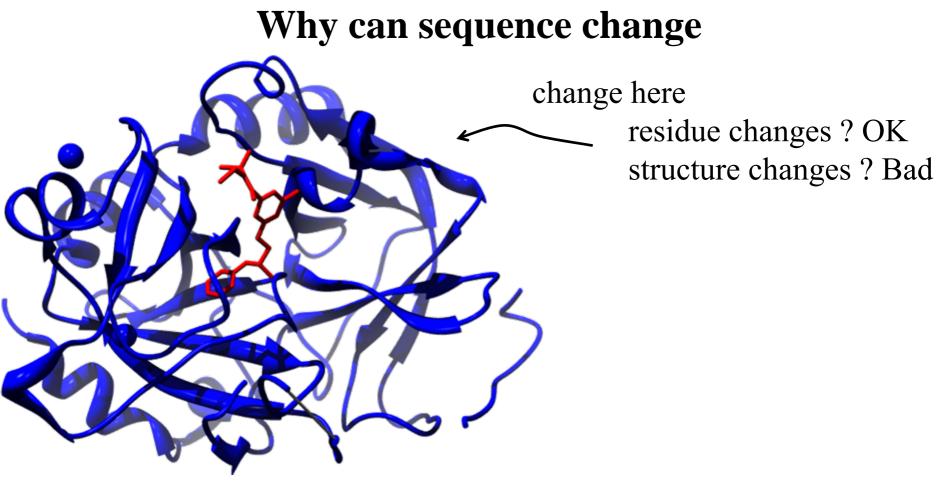
1cbl & 1eca (haemoglobin & erythrocruorin) 14 % sequence id



19/05/2008 [3

No sequence similarity – similar structures

- Are these rare?
 - easy to find 100s of examples
- does this agree with previous claims?
 - dot in diagram two structures seem different

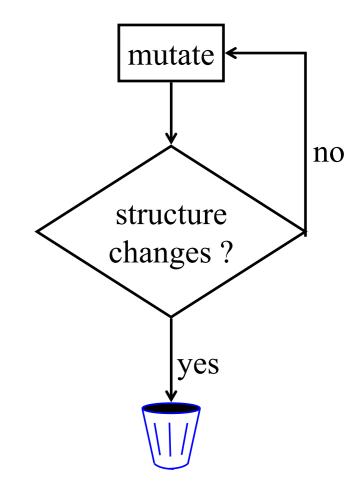

- if sequences are similar
 - structures will be similar
- if sequences are different
 - one does not know

Rost, B.Prot Eng, 12,85–94, 1999

Structure versus sequence similarity

- Clear statement
 - sequence changes faster than structure
- Reason ? Unclear
 - possibility..
- protein function depends on having groups in orientation in space

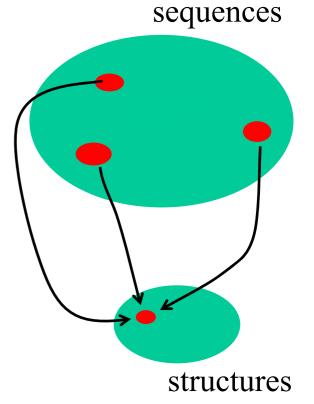
• a view of molecular evolution...


Simple view of molecular evolution

mutate continuously

- mutations which are not lethal
 - may be passed on (fixed)
- if structure changes
 - protein probably will not function
 - not passed on

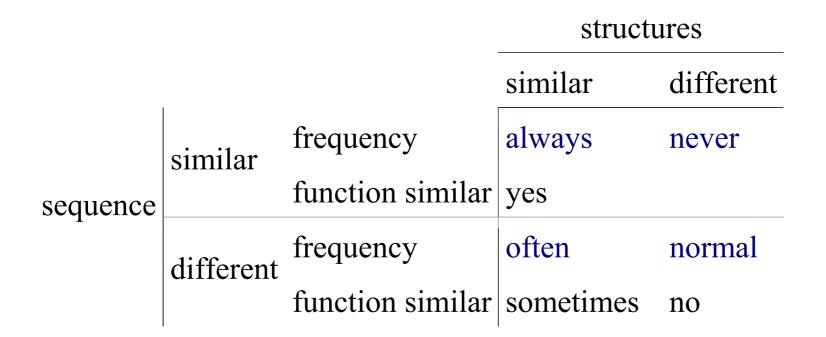
Result


- evolution will find many sequences
 - compatible with structure
 - compatible with function
- how else would we see this ?

Sequence vs structure evolution

Sayings..

- Sequence and structure space
 - sequence space is larger
 - many different sequences map to similar structure
- sequence evolves faster than structure
- Truths...



Practical Consequences

Sequences of proteins are nearly always known

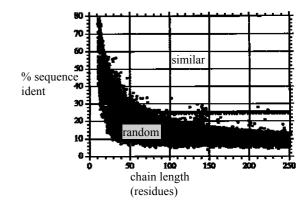
- similar sequence
 - usually similar structure, similar function
- sequences not (obviously) related
 - maybe similar structure
 - maybe similar function
- What if structures are known?

Sequence and structure similarity

• summarise from a different point of view

Sequence vs structure similarity

When comparing proteins


• more information is always better (sequence, structure, function)

Similar sequences

- structure and function will be similar
 - remember threshold graphs from earlier

Similar structures, different sequences

- evolutionary relationship implied but
 - bigger evolutionary distance
- not enough to be confident about function
- what do we mean by similar structures ?

Comparing proteins

- Representation of proteins
- comparison
- classification (later)

Representation Proteins are not as smooth as we draw them • very discrete set of atoms

Protein coordinate files

Important detour - Protein data bank (www.rcsb.org)

- only significant database of protein coordinates
- deposition of coordinates often requirement of publication
- $> 50 \times 10^3$ structures
 - huge redundancy (> 500 T4 lysozyme)
- X-ray crystallography $\approx 85 \%$
- NMR $\approx 14 \%$ (more in smaller proteins)
- File formats standardisation boring but important
 - all programs agree on a format exchange of information
 - two PDB formats
 - one common flat files..

Protein coordinate files

What would you expect?

- Define the chain direction
 - N to C terminus
- within each residue
 - order of atoms
 - backbone
 - sidechain going away from backbone
- unit Å
- usually no Hydrogens

rnes		*4.5
		in the
	Ľ	202
	y h	\$ ``
the of	my yere	
C. A.	er -	

PDB File

ATOM	1	Ν	ARG A	1	26.465	27.452	-2.490	1.00 25.18	N
ATOM	2	CA	ARG A	1	25.497	26.862	-1.573	1.00 17.63	C
ATOM	3	С	ARG A	1	26.193	26.179	-0.437	1.00 17.26	C
ATOM	4	0	ARG A	1	27.270	25.549	-0.624	1.00 21.07	0
ATOM	5	СВ	ARG A	1	24.583	25.804	-2.239	1.00 23.27	С
ATOM	б	CG	ARG A	1	25.091	24.375	-2.409	1.00 13.42	С
ATOM	7	CD	ARG A	1	24.019	23.428	-2.996	1.00 17.32	С
ATOM	8	NE	ARG A	1	23.591	24.028	-4.287	1.00 17.90	N
ATOM	9	CZ	ARG A	1	24.299	23.972	-5.389	1.00 19.71	С
ATOM	10	NH1	ARG A	1	25.432	23.261	-5.440	1.00 24.10	N
ATOM	11	NH2	ARG A	1	23.721	24.373	-6.467	1.00 14.01	N
ATOM	12	Ν	PRO A	2	25.667	26.396	0.708	1.00 10.92	N
•••									
ATOM	38	Ν	CYS A	5	23.095	22.004	2.522	1.00 7.84	Ν
ATOM	39	CA	CYS A	5	22.106	21.863	1.467	1.00 9.61	C
ATOM	40	С	CYS A	5	22.192	20.518	0.830	1.00 10.97	C
ATOM	41	0	CYS A	5	21.230	20.068	0.167	1.00 9.33	0
ATOM	42	СВ	CYS A	5	22.358	22.904	0.371	1.00 10.97	C
ATOM	43	SG	CYS A	5	22.145	24.592	0.888	1.00 12.56	S

 $\boldsymbol{\chi}$

У Z

• Note coordinates

- three decimal places often 5 significant digits
- come back to this in a few Folien

PDB File

ATOM	1	Ν	ARG	A	1	26.465	27.452	-2.490	1.00	25.18	Ν
ATOM	2	CA	ARG	A	1	25.497	26.862	-1.573	1.00	17.63	С
ATOM	3	С	ARG	A	1	26.193	26.179	-0.437	1.00	17.26	С
ATOM	4	0	ARG	A	1	27.270	25.549	-0.624	1.00	21.07	0
ATOM	5	СВ	ARG	A	1	24.583	25.804	-2.239	1.00	23.27	С
ATOM	6	CG	ARG	A	1	25.091	24.375	-2.409	1.00	13.42	С
ATOM	7	CD	ARG	A	1	24.019	23.428	-2.996	1.00	17.32	С
ATOM	8	NE	ARG	A	1	23.591	24.028	-4.287	1.00	17.90	Ν
ATOM	9	CZ	ARG	A	1	24.299	23.972	-5.389	1.00	19.71	С
ATOM	10	NH1	ARG	A	1	25.432	23.261	-5.440	1.00	24.10	Ν
ATOM	11	NH2	ARG	A	1	23.721	24.373	-6.467	1.00	14.01	Ν
ATOM	12	Ν	PRO	A	2	25.667	26.396	0.708	1.00	10.92	Ν
ATOM	38	Ν	CYS	A	5	23.095	22.004	2.522	1.00	7.84	Ν
ATOM	39	CA	CYS	A	5	22.106	21.863	1.467	1.00	9.61	С
ATOM	40	С	CYS	A	5	22.192	20.518	0.830	1.00	10.97	С
ATOM	41	0	CYS	A	5	21.230	20.068	0.167	1.00	9.33	0
ATOM	42	СВ	CYS	A	5	22.358	22.904	0.371	1.00	10.97	С
ATOM	43	SG	CYS	A	5	22.145	24.592	0.888	1.00	12.56	S

residue

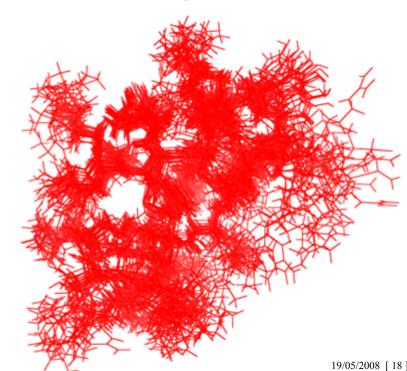
mobility

How accurate are coordinates ? X-ray

- 3 decimal places ? (10⁻³ Å) 5 significant digits ?
- typical resolution in a protein file ? 1 to 2.5 Å
- what is "*x* Å resolution" ?
 - two points < x Å separated, they seem to be one point
- mobility ?
 - at room temperature atoms some atoms move by some Å
- what does 0.001 Å mean ?
- where do the numbers come from ? Later
- NMR ? ..

How accurate are coordinates: NMR

NMR


precision / accuracy not well defined

Most common method

- generate 100's structures based on NMR data
- keep best 20 or 50
- submit these to protein data bank

How accurate are they ?

• clearly the individual Å mean little

Where do the digits come from ?

We cannot resolve atoms to Å; where do the digits come from ?

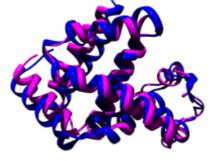
- If every atom had an error of 1 or more Å
 - structures would not look so regular
 - but the measurements do have this error..

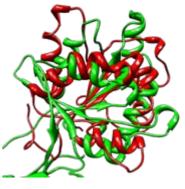
How to reconcile this

- start with an idea of covalent geometry
 - CC bonds 1.1 Å, CN bonds 1.3 Å..
 - standard values for angles
- treat protein as a chain with these restrictions
 - think of all the rotatable angles
- fit every atom to where the experiment says it should be
 - result ?

Resulting coordinates

- coordinates look perfect not as accurate as they seem
- coordinates in PDB are mixture of
 - experiment (where NMR / crystallography puts them)
 - what we expect all bond lengths, angles
- Given some coordinates, how can we compare them ?


Comparing coordinates


• These are very similar

- These are clearly related, less similar
- We want to put numbers on this property

First some notation

- We have spoken of *x*, *y*, *z* coordinates. Easier..
 - vector \vec{r} or for atom i, \vec{r}_i
 - for two proteins let us have position *i* in protein *a* and *b*
 - \overline{r}_i^a and \overline{r}_i^b

Comparing two proteins

- take one atom (C^{α}) from residue *i*
- what do I know from the picture ?
- if my two proteins are similar $\vec{r}_i^a \vec{r}_i^b$ will be a short vector
- for each residue *i*
- define $|\vec{r}_i^a \vec{r}_i^b|$ distance between \vec{r}_i^a and \vec{r}_i^b
- I want a single number that tells me
 - usually
 - how close is a residue in *a* to the corresponding residue in *b*
 - think of the set of distances $|\vec{r}_i^a \vec{r}_i^b|$
 - how spread out is this population of distances ?
 - like a standard deviation (standard Abweichung)

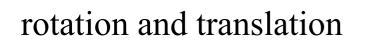
root mean square

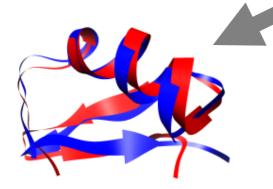
- normal formula for standard deviation $\sigma_x = \left(\frac{1}{N}\sum_{i=1}^N (x_i \overline{x})^2\right)^{\frac{1}{2}}$
- something similar for coordinates

$$r_{rmsd} = \left(\frac{1}{N_{res}} \sum_{i=1}^{N_{res}} \left|\vec{r}_{i}^{a} - \vec{r}_{i}^{b}\right|^{2}\right)^{1/2}$$

- where proteins a and b have N_{res} residues
- *rmsd* is "root mean square difference"
- complications

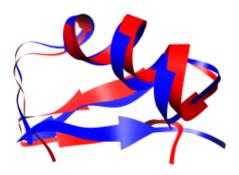
Before calculating rmsd


- two very similar proteins
 - coordinates are in different orientations
 - not on top of each other

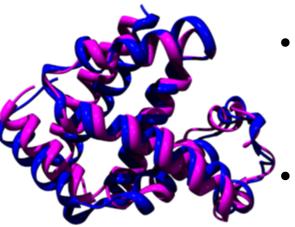

- what are the orientations of files in PDB?
 - totally arbitrary
- first some other steps

Superposition of coordinates

now use formula for *rmsd*


first problems with *rmsd*

- Before calculating *rmsd*
 - coordinates must be "superimposed" (translation + rotation)
- if you and I use slightly different superpositions
 - our *rmsd* values (similarity) will be different


meaning of *rmsd*

- units Å
- *rmsd* is size dependent
 - 5 Å in a small protein (50 residues) will not look similar
 - 5 Å in a big protein (250 residues) will look similar

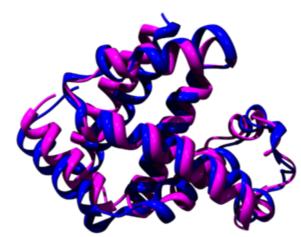
Difficulty with *rmsd*

- these two proteins have the same number of residues $r_{rmsd} = \left(\frac{1}{N_{res}}\sum_{i=1}^{N_{res}} \left|\vec{r}_{i}^{a} - \vec{r}_{i}^{b}\right|^{2}\right)^{1/2}$
- if *i* = 1, 2, 3, .. we use residue 1, 2, 3 in both proteins

• these two proteins have slightly different numbers of residues

we cannot compare residue 1 to 1, 2 to 2..

Proteins of different sizes – first version

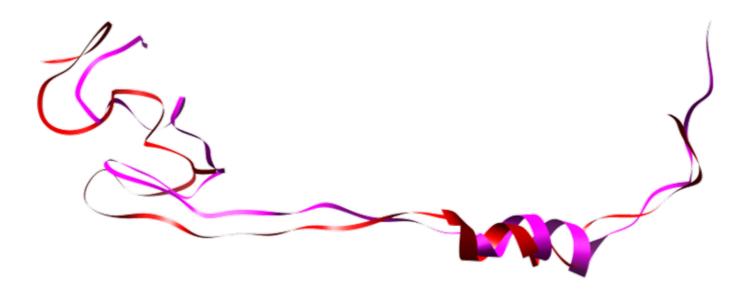

- Problem for each residue *i* in protein *a* we need matching residue in protein *b*
- One approach
- first build a sequence alignment

Selecting residues for alignment

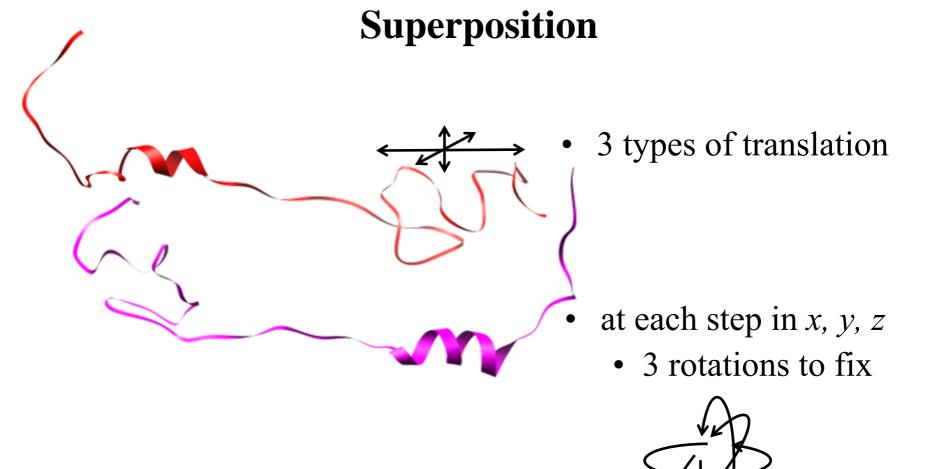
• take the sequence of each protein, calculate alignment

ACDEFG-IK-MNP.. A-DEGGHIKLMNP..

use these residues AC**DEFG-IK-MNP**.. A-**DEGG**H**IKLMNP**..

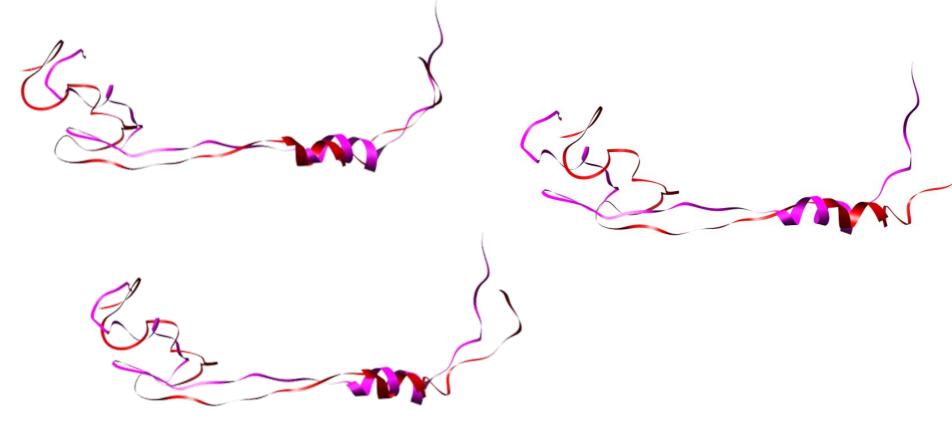

- will find corresponding residues
- will allow for missing / inserted residues
- used in some programs chimera
- problem ... sequence similarity may be near nothing
 - a sequence based alignment may be very wrong

Selecting residues for alignment - better


- We need corresponding residues
 - some kind of alignment
- can one do an alignment based on structures ?
- Answer : yes but..
 - no guaranteed correct solution
 - many different methods
- naïve approach how difficult ?

Naïve structural alignments

• how hard is it to superimpose two structures (different sizes)


• looks easy when answer is known

- worse problem ..
- as you move one structure match gets better and worse

Local minima

• each of these superpositions matches different parts of the helix

- difficult to calculate quality of match
 - each superposition implies a different alignment

Summary of comparing two structures

- we want a single measure of similarity (like *rmsd*)
- this requires we have a set of corresponding residues in the two proteins
- if there is good sequence similarity use it
- naïve methods will not give the best superposition
- structure-based alignments can be calculated
 - require approximations
 - often slow
 - can not guarantee the best answer
- Next topic..
 - what can we do now that we can quantify similarity ?
 - classifications