### Lecture plan

|    | Termin | Dozent  | Thema                                         |  |
|----|--------|---------|-----------------------------------------------|--|
| 1  | 1.4.   | Andrew  | RNA Chemie                                    |  |
| 2  | 8.4.   | Andrew  | Ursprung der RNA-Welt                         |  |
| 3  | 15.4.  | Uli     | Turnover (Synthese, Abbau, Splicing, Editing) |  |
| 4  | 22.4.  | Nicolas | nicht kodierende RNAs in Prokaryoten          |  |
| 5  | 29.4.  | Nicolas | nicht kodierende RNAs in Eukaryoten           |  |
| 6  | 6.5.   | Nicolas | RNA Interferenz                               |  |
| 7  | 20.5.  | Nicolas | Riboswitches                                  |  |
| 8  | 27.5.  | Nicolas | Evolution <i>in vitro</i>                     |  |
| 9  | 3.6.   | Andrew  | Strukturvorhersage I                          |  |
| 10 | 10.6.  | Andrew  | Strukturvorhersage II                         |  |
| 11 | 17.6.  | Andrew  | Strukturvorhersage III                        |  |
| 12 | 24.6.  | Uli     | RNasen+Ribozyme                               |  |
| 13 | 1.7.   | Uli     | das Ribosom                                   |  |
| 14 | 8.7.   | Uli     | Telomere und RNA                              |  |

#### **Seminar Thema**

- try to put first page of each paper in stine
- first come, first served

# The RNA world

- Based on RNA World chapter 2
- Questions
  - did life start with RNA ?
  - RNA similar ?
  - something completely different ?
- What is life ?

# **Today versus history**

Picture today

- implies simultaneous development of
  - proteins (copying)
  - nucleotides (information storage)
- Suggestion
- one molecule
  - self copying
    - possibilities
    - 1. protein like
    - 2. nucleotide like
    - 3. something else
- Remember: this is templated
  - later remove this requirement





#### What is life ? Practical – not philosphical

Practical – not philosophical

- people, trees, ...
- bacteria
- viruses ?
- infectious DNA / RNA ?

Some concepts

- life consumes energy better formulated
- life avoids equilibrium, needs energy, consumes entropy

# Equilibrium

- Reaction  $A + B \leftrightarrow C + D$
- Decay  $A \leftrightarrow B + C$ , then

$$\Delta G = RT \ln \frac{[C][D]}{[A][B]}$$

$$\Delta G = RT \ln \frac{[B][C]}{[A]}$$

• in a closed system, if

 $\ln \frac{[B][C]}{[A]} = 0 \qquad \text{you are dead (or very sleepy)}$ 

- how do we treat this ?
  - life is in "steady state"
- flux of A = flux of BC so  $J_A = -J_{BC}$

#### Steady state systems

- Input of energy
  - maintenance of order
- grows
- catalytic and specific







- bacteria and rust
  - grow, eat nutrients, catalyse their own copying

# Rust

- why is rust not life (what we would like)
  - rather low information
  - no ability to change and evolve

# information / entropy

- entropy is easy to define
  - $N_{states}$  equal probability  $S = -k \ln N_{states}$  or with different probabilities  $S = -k \sum_{i=1}^{N_{states}} p_i \ln p_i$
- life has information, but what is it?

## Information

- Sometimes information = entropy
- for alphabet size  $\lambda$ , information per character  $h = -k \sum_{i=1}^{n} p_i \ln p_i$ 
  - note if some letters are more common, info reduced
- why is rust not living ?
  - alphabet size is 1 no information
- pretend a genome is a digit in alphabet of possible genomes
- what about an e. coli ?  $\approx$  5 million base pairs (5×10<sup>6</sup>)
- how many states could e. coli's genome have ?  $4^{5 \times 10^6} \approx 10^{3000000}$ 
  - of these possibilities, very few are used
  - "information" per genome is big
- Claim
  - evolution is information increase via selection

# Complexity

- Smallest genomes
  - viruses few proteins parasitic
- free living ?
  - a few hundred proteins
- if life came from a simple soup
  - why are there no traces ?
  - is there a minimum complexity for life ?

# Life

- rust can catalyse the production of rust
- the process of "life" can copy sequence<sub>1</sub> or sequence<sub>2</sub>
- this flexibility necessary for evolution

# **Summary of life**

- not at equilibrium / consuming energy
- catalytic
- creating information
- copying with possibility of change / selection
- minimum complexity ? no evidence yet

# **RNA world existence**



#### **RNA world definition**

- replication of RNA (directed)
- Watson-Crick base pairing
- no protein catalysis
  - did it exist ?

## Why believe in an RNA world ?

Vague...

- nucleotides carry information
- many examples of catalytic activity

Strong

- ribosome..
- active site rather well known



### **Ribosome is an ribozyme**

• part of ribosome near active site

- remove all the RNA
- the nearest protein to active site is > 18 Å
- the fundamental operation of making proteins from a template – carried out by a ribozyme



Nissen P, Hansen J, Ban N, Moore PB, Steitz TA., Science 289, 920-930 (2000)

# **RNA World – requirements**

- source of basic requirements
  - ribose
  - bases (A, C, G, U + more T, I, X, ...)
- vague source
  - Miller experiments from 1950's
- can one make nucleosides ? nucleotides ?
  - polynucleotides ?

 $N_2, O_2, CH_4, \dots$ gly, ala, ...

• lots of problems

# Specificity

- make sugar in lab
  - condensation from smaller molecules
  - result ?
    - mixture of 5 member sugars (ribose, pyranose, ...)
    - ribose is not dominant
- enantiomers, isomers, ..
  - details of linkages different, but only one is used in modern world
    - syn / anti, L / D
- a list of problems..



# polynucleotide synthesis (problems)

- nucleotide (base+sugar+PO<sub>4</sub>)  $\rightarrow$  polyphosphate (base+sugar+(PO<sub>4</sub>)<sub>n</sub>)
  - plausible without enzymes
- nucleoside  $+PO_4 \rightarrow NTP$  more difficult without enzymes
  - necessary in modern life chemistry
  - enzyme requirement
    - good to distinguish life from random chemistry
    - hard to see in random soup (urschleim)

# Joining monomers (problems)

• modern chemistry always 5' to 3'

Nucleotides (NMP)

- 3 reactive groups
  - 5' PO<sub>4</sub>, 3' OH, 2' OH
- Soup of 5' NMPs and condense
- mixture of
  - 5', 5' pyrophosphate
  - 2', 5'  $PO_4$  diester
  - 3', 5' desired diester



#### 5' to 3' who cares ?

Mental picture / preconception

- one RNA acts as a template for itself or inverse
- regular geometry

Possibility – catalysis of one "regioselective" product by

- metal ions
- adsorption on surfaces, minerals
- specially folded RNA

### **Replication without enzymes**

- possibility soup with 4 activated bases (N- 5'PO<sub>4</sub>2-Meimidazole) where N is A, G, C, U
- add poly C directed copying to mostly poly G
- problem
  - poly-G like to form tetramers
- poly  $(G_m C_n)$  copies to poly  $(G_n C_m)$  but
  - when [G] > [C]
    - tends to form self interactions not good as a template
- is this a property of
  - their model system ?
  - the specific sequences ? (good ones may exist)

# **RNA replicase**

- One model we have one replicase
- Basic requirement replicase should
  - act on itself (or similar copies)
  - should produce
    - itself or
    - complementary copies
- Length constraints
- define fidelity *q* = probability that one residue is correctly added
- probability of copying chain length n correctly =  $q^n$
- without errors no evolution
- interesting proposal later..

| q    | n  | perfect copies |                   |
|------|----|----------------|-------------------|
| 0.9  | 4  | 0.66           |                   |
| 0.9  | 10 | 0.35           |                   |
| 0.95 | 10 | 0.65           |                   |
| 0.95 | 20 | 0.36           | 09/04/2008 [ 21 ] |

### Joyce / Orgel – first replicase

How likely are we to take a random soup of nucleotides

- ribozyme of 40 bases
- *q* = 0.9
  - not very likely, but if
- a replicase starts
  - copies related molecules better than unrelated
- if it copies better / faster it will be selected for and evolve
- could this happen ?
  - copying by other catalysts using RNA as template
  - physical separation of templates rather than true selectivity

#### How to make nucleotides ?

- N-sugar + xxx-PO4  $\rightarrow$  N-sugar-PO<sub>4</sub> (+H<sub>2</sub>0)
- ribozymes have been made for related reactions
  - quite plausible
- abiotic ?
  - many examples of catalysis exist
    - Pb<sup>2+</sup>, BO<sub>3</sub><sup>3-</sup>, ...
  - full catalysis requires a series of steps
    - each with specific catalysts

### **Alternative Genetic Systems**

Must we start with RNA?

- If not, bias is towards a system
  - can pair specifically with RNA sequences
    - XYZW pairs to ACGU so we can have template directed RNA synthesis
  - should form an open (helical) structure
- examples
  - replace ribose with pyranose (p-RNA)
    - stable, helical
    - does NOT form paired dimers with RNA

from Joyce, GF & Orgel, LE in The RNA World, (eds Gesteland, RF, Cech, TR, Atkins GF) Cold Spring Harbor Lab Press 2006

### different sugars RNA

- use threose (left) TNA
  - forms stable double helix
  - threose may be easier to make
- use glycol (right) GNA
  - also forms double helices



# peptide RNA

- a peptide backbone (PNA)
  - forms stable helices with DNA or RNA
    - suggests templating of modern nucleotides
- even more
  - alternating L and D-alanine
- summary...
  - pyranose (p-RNA)
  - tetrose (RNA)
  - ethylene glycol (GNA)
  - peptide NA (PNA)
  - alanyl NA (ANA)



### Do we need this general templating ?

So far – search for general replicase, polymerase

- Can one build a living system from less general components ? Examples
- peptides made without ribosomes
  - antamanide
  - glutathione
- the "information" is stored in enzyme structures

reference: Kauffman, SA, The Origins of Order, Oxford University Press, NY 1993

# **Requirements for DNA or Protein world**

- 1. RNA can catalyse formation and cleavage of internucleotide bonds
- 2. abiotic formation of the monomers
- 3. solutions must be concentrated (small volume)
- 4. anabolic flux (making larger polymers)
- 5. catalytic closure

formation of each member of set is catalysed by some other member

- we could apply these rules to proteins or nucleotides
  - change nature of monomer
- consider the first four problems

### Some prerequisites are easy

- 1. proteolytic enzymes or ribozymes
- 2. tolerate a very imperfect soup of molecules, complex peptides or mixed 3',5' + 2', 5' nucleotides
- 3. confinement drops, minerals, agglomerations
- 4. most reactions are  $A+B \leftrightarrow AB + H_20$ 
  - removing water drives equilibrium to right
- 5. catalytic closure not by simple templating

#### **Catalytic closure**

- imagine a soup of polymers with conversions
  - cleavage or ligation ABCDE  $\leftrightarrow$  ABC + DE
- how many ways can we form a 5-mer? or 2-mer



Kauffman, SA, The Origins of Order, Oxford University Press, NY 1993

## **Catalytic subset**

- within set of polymers some are enzymatic for joining / breaking units
  - for RNA  $4 \times 4 = 16$  X-Y types
- pick a polymer
- with probability P pick a reaction it catalyses
- imagine green sequence does all AB bonds
  - leads to huge number of edges
- go to next sequence, maybe assign a reaction



### **Catalytic subset**

- how many real enzymes and edges do we need ?
- I do not have to be able to synthesise everything

• what is the behaviour with random graphs ?





### edges and connectivity

- standard results
- as edges  $\approx$  nodes/2
  - most components are connected
  - very sudden Edges 15 Nodes 20 (
  - (phase transition)
- when edges≈nodes
  - cycles appear



()

(18)

0

()

(5)

2

(



()

(13)

(4)

2

**(B)** 

- those nodes in cycles
  - can be synthesised using only other components in the cycle
- probability of cycles is near 1

# **Catalytic cycles**

- Gross simplification here
  - random graph edges (plausible ?)
  - no specificity
    - one enzyme does all XY bonds regardless of context
  - all rates the same...
- reasoning valid for 4 bases (RNA) or 20 residues (protein)
- main idea
  - without real "information" system
    - self reproducing
    - minimum complexity (mentioned earlier)
    - appears to self-replicate (very indirectly)
    - may have errors, tolerance of errors = evolution

## Summary

- life, entropy, information
- evolution, errors and tolerance of errors
- RNA world
  - ribosome strong evidence
  - search for (possibly indirect) template directed replication
  - difficult to specify exact reactions producing
    - activated monomers
    - polymers
- search for simple template-directed replication may not be necessary
- self reproducing system may easily spontaneously form