RNA Folding / Kinetics

Andrew Torda, July 2008, 67-939 RNA

- Predicted free energy conformations ?
- Does RNA find them ?
- Does RNA have some help?
- First ... rules
- Equilibrium / ideal world
 - lowest energy most populated
 - Boltzmann distribution perfect

• other possibilities

Nasty kinetics

possible

- $1 \rightarrow 2$ transition slow
 - never happens or
 - RNA is degraded

- consequences
 - predicted free energy minimum is not helpful
 - people try to estimate barrier heights

Predicting kinetics

- As in protein lectures
 - possible with simple models
 - still rather difficult
- Approaches
 - big simulations
 - big searches
- Kinetics
 - examples of more general methods

Brute force simulations

- MD or Monte Carlo style ?
- Energy model is the classic Nussinov or nearest neighbour model friendly ?
 - in both forms $E = \begin{cases} 0 & \text{base pairs not formed} \\ \text{favourable} & \text{bases paired} \end{cases}$
 - not differentiable function no forces not friendly
- two possibilities for dynamic simulations
 - 1. different energy model (not discussed here)
 - 2. discrete methods (here)

Monte Carlo like methods

- Normal Monte Carlo
 - any random, unbiased or non-physical moves OK
 - no attempt to model time not normally relevant
- Claim act of faith belief dream
 - select a move set which you believes models physical moves
 - the simulated system might reflect physical processes
 - what would the moves look like ?

A move set for RNA

$$(((\bullet((((((\bullet\bullet\bullet)))))\bullet\bullet((((\bullet\bullet\bullet))))))))\bullet\bullet\bullet\bullet\bullet$$

A move set for RNA

Flamm, C., Fontana, W., Hofacker, IL, Schuster, P, RNA, 6, 325-338, RNA Folding at elementary step resolution

Flip a partner

- looks easy
 - how much of a rearrangement does it mean?

Diffusion of bulge

Flamm, C., Fontana, W., Hofacker, IL, Schuster, P, RNA, 6, 325-338, RNA Folding at elementary step resolution 07/07/

Very naïve method

- Given this move set
 - start from unfolded RNA
 - try to fold it see how fast a predicted structure is formed
- more specific questions
 - from conformation 1 or 2 how fast is 2 or 1 populated ?
- will not work well..

Why is kinetics difficult

- different to earlier lectures
 - talk about rates
 - equilibrium

$$\frac{p_1}{p_2} = e^{\frac{\Delta E_{1,2}}{kT}}$$
energy

•
$$p_{1,2}$$
 depends on $e^{E_b - E_2/kT}$

•
$$p_{2,1}$$
 depends on $e^{E_b - E_1/kT}$

• but does one know $E_b - E_1$?

Kinetics is very difficult

Idea of one barrier is not realistic

- lots of possible routes
 - each has its own rate
- final rate depends on flux through every path

The answer

transition matrix / rate matrix / master equation...

A matrix approach

- Example use
- Probability p_{jk} of going from j to k• rows must sum to 1 $\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1s} \\ p_{21} & p_{22} & \cdots & p_{2s} \\ \cdots & \cdots & \cdots & \cdots \\ p_{s1} & p_{s2} & \cdots & p_{ss} \end{bmatrix}$
- at time t, system has vector \mathbf{v}_t of being in each state
- at next time step $\mathbf{v}_{t+\delta t} = \mathbf{P}\mathbf{v}_t$
- If I apply this infinitely, we get an equilibrium distribution
 - interesting, but not helpful here
- Can we easily guess at the rate of transitions from *i* to *j*?
 - not really .. how many states do we have ?
 - how would I get rates across all different paths?

A practical approach

• What is the value of a matrix element?

$$\frac{k_{ij}}{k_{ji}} = e^{\frac{-\Delta G_{ij}}{kT}}$$

- looks like normal Monte Carlo
- Add kinetic element
 - assign characteristic time (distribution) to each move
 - forming a base is fast
 - moving a bulge is slow
- simulation scheme

Simulating with time

pick starting conformation

while (not finished) choose δt from poisson distribution from n move types calc p_i that move type i happened choose move according to p_i try move - accept/reject

- result ?
 - from many short steps only a frequent (base pair formation) is tried
 - occasionally a less frequent step is tried

Beliefs

- energies as in any scheme
- time scales very difficult
- have you really captured the correct moves ?

Example result

- folding of a hairpin
- two dominant paths to final structure

Flamm, C., Fontana, W., Hofacker, IL, Schuster, P, RNA, 6, 325-338, RNA Folding at elementary step resolution 07/07/2008 [17

Landscape approach

- What would one like ?
 - complete picture of energy landscape
- Simplify
 - of the astronomical number of conformations
 - only a finite number are relevant
- Ingredients
 - literature model for energies
 - method to find all N_{low} structures within x kJmol⁻¹ of best
 - N_{low} may be 10⁶ or 10⁷
 - sort this list

Landscape / barrier approach

- set up long list of conformations (10⁶ or 10⁷)
- set up list of basins (minima)
- set up list of transition / saddle points

```
for each point x in sorted order
build list L of neighbours (structures with single b.p.
change)
     if all members of L are new
         add x to basins
     else
         add x to saddle points
```

- result
 - a list of minima with connecting saddle points

Landscape barriers

- we have a list of likely conformations
- we have a list of likely barriers

Flamm, C & Hofacker, I.L., Monatsh Chem 139, 447-457 (2008) Beyond energy minimization ...

Using landscape barriers

- for any pair of minima we have a barrier height $E_{L_1} E_1$
- can calculate $p_{1,2} = e^{\frac{E_b E_1}{kT}}$
- use the transition rate matrix to get
 kinetics

Flamm, C & Hofacker, I.L., Monatsh Chem 139, 447-457 (2008) Beyond energy minimization ...

Assumptions / Implications

- assume we have not neglected too many relevant states
- great trust of energy model
- important
- the lowest energy state may not be the most populated
- if RNA is degraded ?

Biochemical complications

- If RNA folds by itself, one can try to model folding / kinetics
- RNA chaperones
 - very popular belief
- Rules
 - if they do not consume ATP (energy)
 - they cannot disturb equilibria
 - they could disturb pathways

Example kinetic complication

- fictitious
- if protein binds to some intermediate
 - some pathway may be slowed^{0.8}
- stories
 - chaperone "destabilises" misfolded structures
 - hard to justify on free energy terms

• implies distortion of energy surface

Summary

- even good energy models for RNA are similar to discrete models in protein / polymer world
 - heavily discretised
- major assumption
 - one can either
 - simulate the system directly
 - obtain kinetics from simple transition matrix
- regardless of details
 - minimum (free) energy structure prediction may not be sufficient