Applications – MD / MC

Andrew Torda, May 2009, strukt &sim

Basic tools

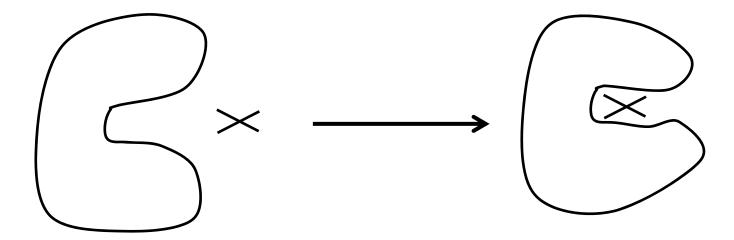
- Force field
- MD / MC

Some application areas

- timescales
- free energy calculations
- simulated annealing
- structure refinement

Simulating dynamics (optimistic / naïve)

- Claim
 - protein has a hinge which must open to bind ligand



- Can one see rates?
 - rates for different ligands?

Timescales

- most common quantity τ
 - time to rotate by 1 rad
 - time for decay in $A(t) = A(0) e^{-t/\tau}$
 - relaxation time
 - characteristic time
- times in proteins...

Some typical times in proteins

	Amplitude (Å)	$\log_{10} \tau(s)$
bond vibration	0.01 - 0.1	-14 to -13
rotation of	5 – 10	-11 to -10
surface sidechain		
protein hinge	1 - 5	-11 to −7
bending		
rotation of	5	-4 to 0
sidechain in		
middle of a		
protein		
local loss of	5 – 10	-5 to +1
protein structure		

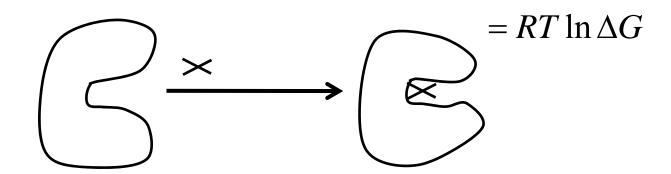
Timescales

- Typical big simulation $\approx 1 \text{ns} = 10^{-9} \text{s}$
- Imagine event with characteristic time 10⁻⁹s
 - may or may not be seen
- consider time 10⁻¹⁰ s
 - may be seen a few times
- What you would like
 - 100's or 1000's of observations
- Limits of timescales
 - fast events $\tau \ll t_{simulation}$ OK
 - events $\tau < t_{simulation}$ poor statistics
 - $\tau \approx t_{simulation}$ no statistics
- Previous example (drug binding)
 - it is not enough to observe an event once (or few times)

Free Energy Calculations

- Free energy is most important
- Predicting therapeutic efficacy

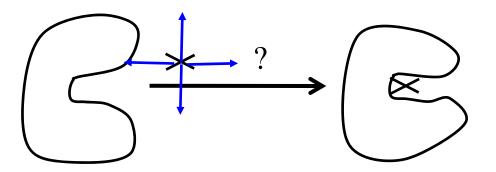
$$k_d = \frac{\text{[drug][protein]}}{\text{[drug - protein]}}$$



- could we just look at energies? What are contributing terms?
 - ligand-water \rightarrow ligand + water (many interactions, ΔS)
 - ligand+protein
 - ligand loss of entropy / water entropy change
- simulate?

Free simulation for binding

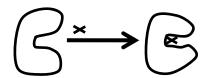
• if we simulate, where will the ligand go?



- may take years for ligand to find protein
- short cut?
 - force ligand to protein
 - artificial force + corrections
 - very difficult still requires rearranging water
 - entropy estimation very difficult

Estimating free energy differences

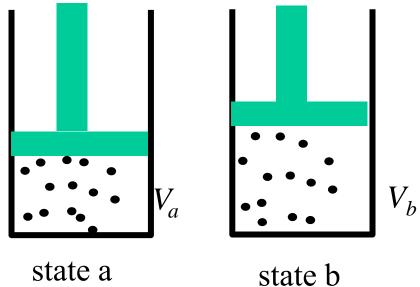
- G = U TS• but $S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$
 - so we cannot really get S
 - some books write in terms of partition function
 - similar problem especially visiting high energy regions
- forget absolute free energies
 - concentrate on ΔG
 - no problem usually interesting property



Work and free energy changes

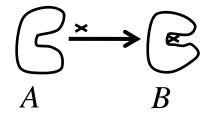
work done A to B

- free energy change
 - look at either state
 - real world automatically includes entropy

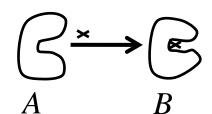


work going from unbound →bound

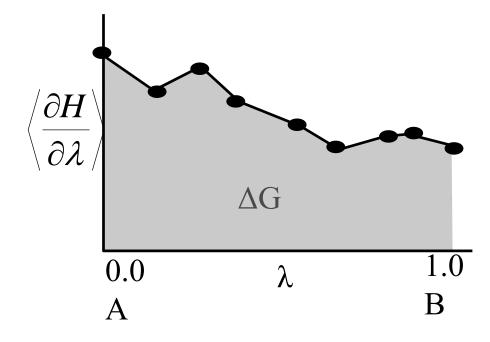
- ΔG_{AB}
- what is B? what is A?
 - more later
- measuring work?



Work and free energy



• measure the work needed to move from A to B



• where *H* is again Hamiltonian $(E_{kin} + E_{pot})$

$$\Delta G = \int_{A}^{B} \left\langle \frac{\partial H(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda \qquad \text{or} \qquad \Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$$

Binding energy - feasibility

- Would this approach work?
 - $\langle \partial H/\partial \lambda \rangle$ must be a good average (lots of fluctuations)
 - must change λ slowly
 - chemistry problems: your simulation would
 - get averages with all water molecules
 - gradually remove water molecules (high energy?)
 - find the correct binding
 - get good averaging there
 - states A and B are very different they must be well sampled
 - intermediate (higher energy states) must also be sampled
 - does not work well in practice

Paths / Energy differences (detour)

- Problem the path is too difficult changes too big
- Energy differences depend on end states not paths
- Look at $\Delta E_{1,2} = E_1 E_2$
 - would it matter if we go $E_1 \rightarrow E_3 \rightarrow E_2$?
- Can we take even stranger paths?
 - go through non existent E_4 ?
 - no problem

 $E \quad \begin{vmatrix} E_3 \\ E_2 \\ E_1 \end{vmatrix}$

Same reasoning applies to free energies

Applying different paths

• Originally wanted (ligand A or B, protein P)

•
$$A + P \leftrightarrow AP$$

$$\Delta G_{\mathsf{A}}$$

• what if I know
$$B+P \leftrightarrow BP$$
?

$$\Delta G_{\mathrm{B}}$$

• maybe $\Delta \Delta G_{AB}$ would be easier

•
$$\Delta \Delta G_{AB} = \Delta G_A - \Delta G_B$$

$$A + P \xrightarrow{\Delta G_A} AP$$

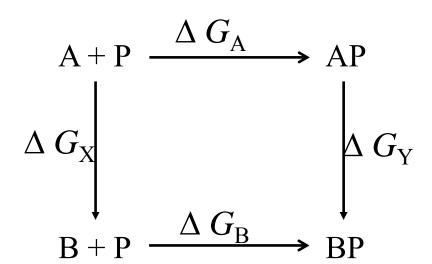
- what would $\Delta \Delta G_{AB}$ mean?
 - what is relative binding strength?

$$B + P \xrightarrow{\Delta G_B} BP$$

Alternative routes

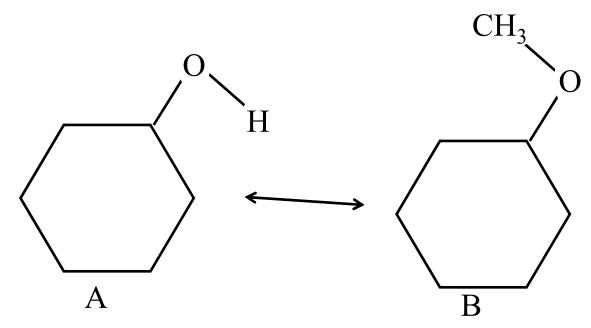
- ΔG_A and ΔG_B too hard
- we would be happy with $\Delta \Delta G_{AB}$
- $\Delta G_{\rm A} + \Delta G_{\rm Y} = \Delta G_{\rm B} + \Delta G_{\rm X}$
- $\Delta G_{\rm A}$ $\Delta G_{\rm B}$ = $\Delta G_{\rm X}$ $\Delta G_{\rm Y}$ remember $\Delta \Delta G_{\rm AB}$ = $\Delta G_{\rm A}$ $\Delta G_{\rm B}$

- so $\Delta \Delta G_{AB} = \Delta \Delta G_{XY}$
- why ΔG_X easier?
- why ΔG_Y easier?



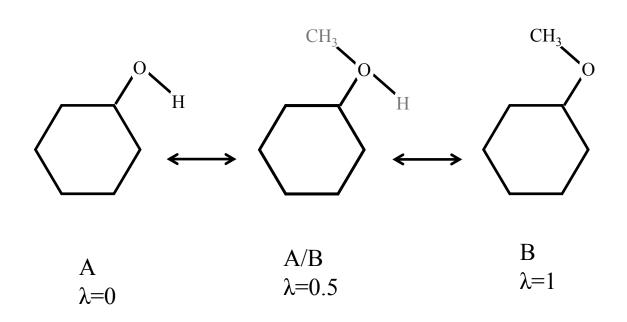
Easier free energy changes

- if A/B are rather similar
 - AP \leftrightarrow BP or
 - $B + P \leftrightarrow A + P$ (free $A \leftrightarrow B$)
- are small changes smaller than
 - removing water order, removing water energy, finding protein...
- example
 - small change



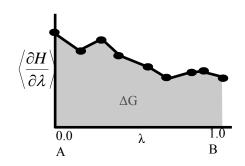
Fictitious states

- remember formulae
- we need to make chemistry a function of λ



$$\Delta G = \int_{A}^{B} \left\langle \frac{\partial H(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda$$

$$\Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$$



λ dependence

•
$$\lambda = 0$$

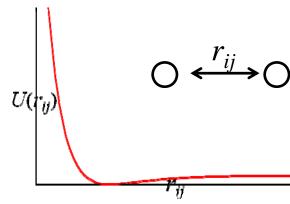
an OH group

•
$$\lambda = 1$$

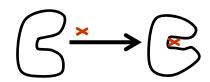
an OCH3 group

•
$$\lambda = 0.5$$

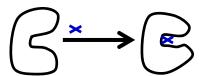
- charge of H half of original charge
- radius / size (σ, ε) half of real value and so on
- atoms gradually
 - appear in one direction
 - disappear in other
- description of system is now function of λ



λ dependent simulations



- two simulations necessary
 - λ from $0.0 \leftrightarrow 1.0$ in protein
 - λ from $0.0 \leftrightarrow 1.0$ in water
 - both from $red \leftrightarrow blue$



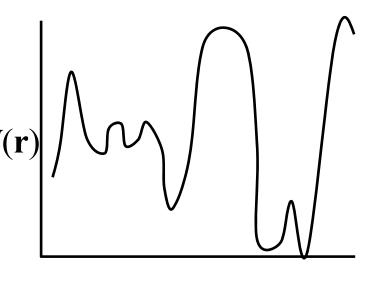
- As λ slowly moves from 0.0
 - water gradually feels more/less influence of some atoms
 - system should not have to rearrange itself too much
- when does method work best?
 - when changes are small
 - comparison of similar ligands in a protein

Summary of free energy calculations

- from first principles:"free energy differences, equilibria
 - easy to calculate
 - in practice impossible (sampling not possible)
- forget absolute free energies
 - ΔG determine most phenomena in the world
- processes like binding still too difficult to simulate (slow, too many conformations / states to visit)
- most calculations these days use $\Delta\Delta G$
 - aim to get relative binding strengths

Simulated Annealing

- Classic reference separate handout / not on web (naughty)
- Basic tools
 - MC or MD with control of temperature
- Use: difficult optimisation problem
 - chip layout
 - travelling salesman problem
 - protein structure
- Optimisation problem
 - several dimensional (2 to 2 000)
 - many local minima



r

Procedure

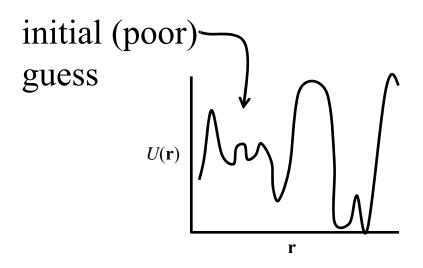
```
while (T > T_{end})

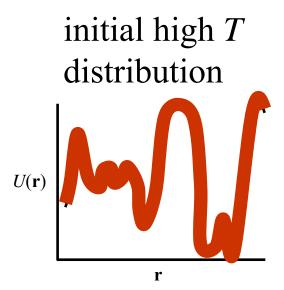
T(t) = T_0 e^{-ct}

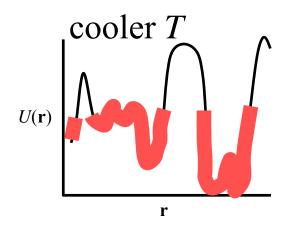
move system (Monte Carlo)
```

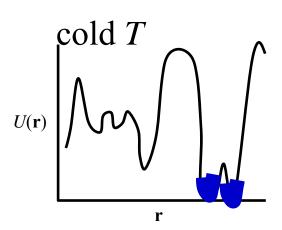
- T_0 initial temperature is hot
- c is decay rate (rate of decrease)
- cost function is
 - E_{pot} in chemistry
 - path length in travelling salesman
 - board cost in chip layout problem ...
- why may this work?

Simulated Annealing concept









Properties, practical issues

Admit that there may not be a best solution

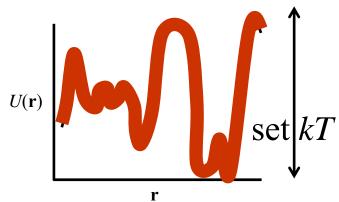
not worth spending effort between many very good solutions
 Some problems have "phase transitions"

How hot should T_0 be ?

- infinite? No: look at barriers How slow should cooling be (c)?
- system should be at equilibrium
- very slow

Cool exponentially?

- best first guess
- should certainly cool more slowly at transition points



Anneal with MC or MD?

Historic use of Monte Carlo

easiest to apply to many problems

Use MD?

- provides expected advantages (efficiency)
- uses available gradient / derivative information Implementation
 - Couple to temperature bath, make T time dependent

Use in practice?

- simulated annealing in
 - most MD codes, refinement packages, ...

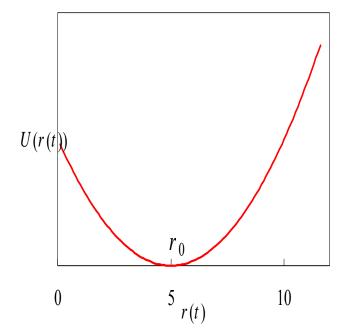
Refinement of Structures (NMR / X-ray)

- Story from first semester
- Problem: generate protein coordinates from NMR information (or X-ray)
 - distance geometry gives an initial guess, but
 - distance geometry methods spread error across all distances
 - errors are spread across bonds, measured distances
 - chirality may be broken (causes distance problems)
- Belief
 - coordinates are not bad, but could be improved

Pseudo – energy terms

- For some distance measurement *i* between some pair of atoms
 - r_0 measured distance
 - r(t) distance between particles at time (t)
 - say $U_i(r) = c_i (r(t) r_0)^2$
 - add this to normal force field

$$U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$



• $U_{phys}(\mathbf{r})$ normal force field - atomistic (bonds, electrostatics...)

result?

- System moves to low energy + low fake energy
 - gradually moves to agree with experimental data
- Practical issues

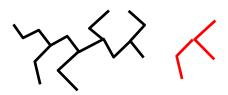
$$U_{tot}(\mathbf{r}) = U_{physical}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$

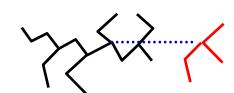
- $U_i(r) = c_i (r(t) r_0)^2$
 - big c very artificial
 - small c system will be slightly biased to agree with experimental data

Fake Energies

Fake energies for many purposes

- Refinement of
 - X-ray structures (common)
 - NMR (often)
 - others: microwave spectroscopy, ...
- Modelling problems
- you want to put a bond in a model
 - putting it in directly
 - high energy bond
 - system stuck in minimum
 - introduce a distance restraint
 - ullet gradually increase associated constant c





Summary

- What one can do with related methods
 - look at timescales of motions (very superficial)
 - free energy calculations important for problems such as binding of ligands
 - simulated annealing methods used as minimizers, not necessarily to get an ensemble
 - pseudo-(potential) energies (X-ray, NMR, ...)