Water models / solvation

Andrew Torda, May 2009, 00.912

Biggest effects of water

- electrostatic
- dynamic

Model types

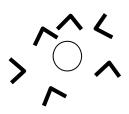
- explicit
- implicit

Dynamic effects of water

Dynamic effects of water

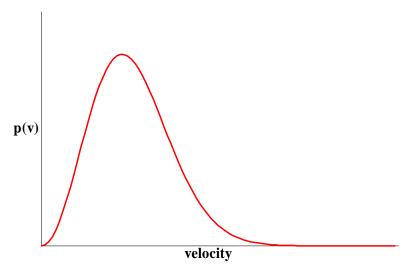
one lonely moving particle

- initial velocity \dot{x}_t
- future velocity easy $\dot{x}_{t+\delta t} = \dot{x}_t$
- energy? constant $\frac{m\dot{x}^2}{2}$


two particles? interacting?

- future velocity a bit more difficult
- easily bounded cannot be more than $\underline{m_1\dot{x}_1^2 + m_2\dot{x}_2^2}$

one particle in water...


Velocities of particles in water

• lots of random interactions

- a small velocity?
- a big velocity?
- a probability distribution
- how does \dot{x}_t tell us about $\dot{x}_{t+\delta t}$?
 - much less

+

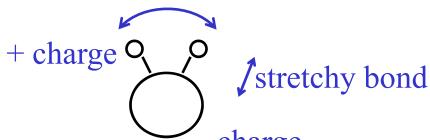
Modelling dynamic effects

Summary


- solvent will add fluctuations
- makes us forget velocity faster

Can this be modelled?

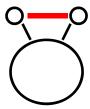
- yes (in molecular dynamics simulations)
- not really a force field / energy topic
- add random fluctuations to velocities
- can be made to look like water


Electrostatic effects of water

- water molecules
 - not charged
 - polar
- interaction between charges very different if water in between
- details soon

Explicit water

- earlier descriptions of proteins
 - a set of connected atoms
- extend to include water
- what does water look like? flexible angle



- what else has it got? charge
 - think about electron pair on "O"
- what is really important?

Important features of a water model

Do we care about water internal dynamics?

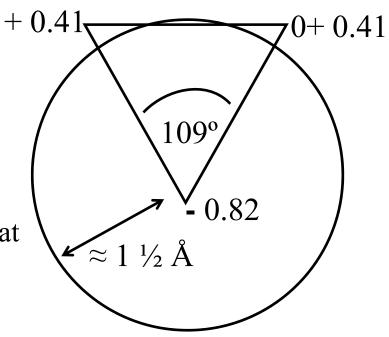
- usually not
- make bonds rigid
- make angle rigid
 - treat as a bond

Dimensions

- protons are really small
- does water geometry matter?

usually not

Charge


• most important

Final result..

A useful explicit water model

- 3 charges
- 1 Lennard-Jones radius
- 3 masses why?
 - only for molecular dynamics
- 3 bonds (completely rigid)
- has a name "SPC"
- what can it do?
 - diffusion, density, compressibility, heat capacity
 - dielectric constant
 - solvation energies ?
- perfect?
 - no
 - add polarisation, bonds, bond angles, offset charge from mass

Explicit water + protein

Protein water interactions

- via charge
- via Lennard-Jones term $(r^{-12} \text{ and } r^{-6})$

Only average properties are interesting

• useful only in simulations (MC, MD)

What is neat

- automatically incorporates
 - dynamic effects
 - electrostatics

Problems

- very very expensive
- typical simulation 10³ protein atoms
- 10⁴ solvent atoms

worst case for proteins + water

Imagine a world with no cutoffs for interactions

- scales as $O(n^2)$
- adding water takes 5 or 10 times as many atoms
- takes 25 or 100 times as much CPU time

What to do?

look for cheaper model

Cheaper water models

- Do we really need dynamic effects of water?
 - maybe not
 - only want energies
 - only care about structures
 - or
 - model with a random force
- then look for model which gets most essential aspects of water
 - electrostatics
 - distance dependent dielectric
 - reaction field
 - surface area methods

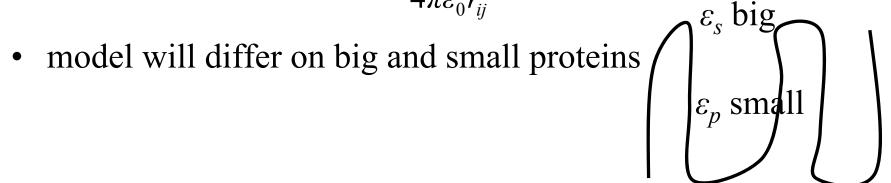
Distance dependent idea

Bare charges interacting

$$\begin{array}{c} + \\ \leftarrow \\ + \\ \leftarrow \\ \end{array} \qquad + \begin{array}{c} + \\ U(r_{ij}) = \left(\frac{1}{4\pi\varepsilon_{0}}\right) \frac{q_{i}q_{j}}{r_{ij}} \\ \equiv \frac{q_{i}q_{j}}{Dr} \end{array}$$

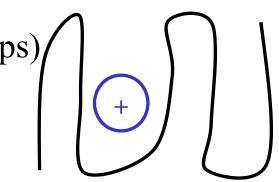
With solvent
$$+$$
 $U(r_{ij})$ changes less than $\frac{q_i q_j}{Dr_{ij}}$

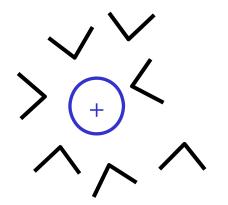
Net effect?


- water is very polar and tends to orient itself around charges
- as if the water "screened" the charges (makes them smaller)

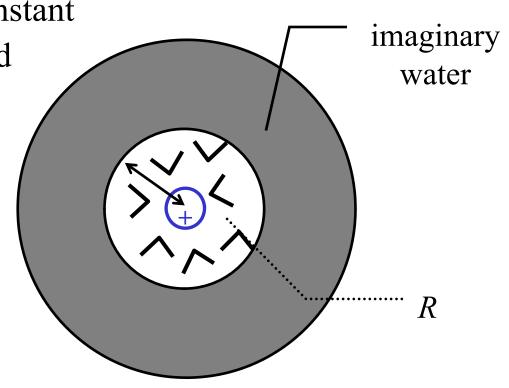
Distance dependent dielectric implementation

- invent approximation $D_{eff} = r_{ij}$ then $U(r_{ij}) \approx \frac{q_i q_j}{D_{eff} r_{ij}} \approx \frac{q_i q_j}{r_{ij}^2}$
- is this physics?
 - no
- does it work?
 - a bit (ugly)
 - little real physical basis
- water does not behave so simply
- fundamental problem...


Fundamental problem with distance dependent D

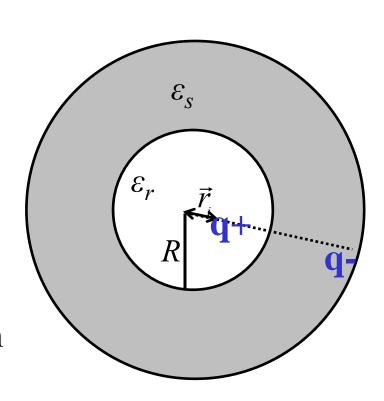

- if we rely on distance dependent dielectric constant
 - assume one 'fix' works everywhere (not true)
- think of formula $U(r_{ij}) = \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}$

Reaction field idea


- different problem to before
- charge in a protein (lots of neutral CH groups)
 - not much happens
- particle in water
 - what does the water do?
 - tends to orient
 - lots of q⁺q⁻ interactions
 - much better energy
 - is this like a force?
 - yes, think -dU/dr
 - can this be modelled?

interaction with imaginary solvent

- think of particle interacting with distant water molecules
- our charge interacts with them all but
 - if they are far away (big R) less important
 - depends on dielectric constant
 - inside white region ε_r and
 - grey region ε_s
- within white region
 - treat atoms with a correction
- grey region
 - treat as continuum



Realistic picture infinite continuum R=25 Å

cutoffs 10 to 12 Å

Reaction field / image charge formula

- as if we interact with an "image" charge
- size $q_{im} = -\frac{\left(\varepsilon_{s} \varepsilon_{r}\right)}{\left(\varepsilon_{s} + \varepsilon_{r}\right)} \frac{q_{i}R}{r_{i}}$
- location $\left(\frac{R}{r_i}\right)^2 \vec{r_i}$
- near middle
 - $R >> r_i$
 - image far away
- near boundary
 - imaginary solvent important
 - strong (favourable) interaction
- important result
 - we have modelled the happiness of a charge in solution
 - charges happiest on outside of protein

Reaction fields and pairs

- charge q_i interacts with water
- water responds
- q_i feels effect of water
- no longer $U(r_{ij}) = \frac{q_i q_j}{4\pi \varepsilon_0 r_{ij}}$
- instead, $U(r_{ij}) = \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}} \cdot f(q_i, q_j, \text{distances to center, ...})$

Simpler ways to model solvent

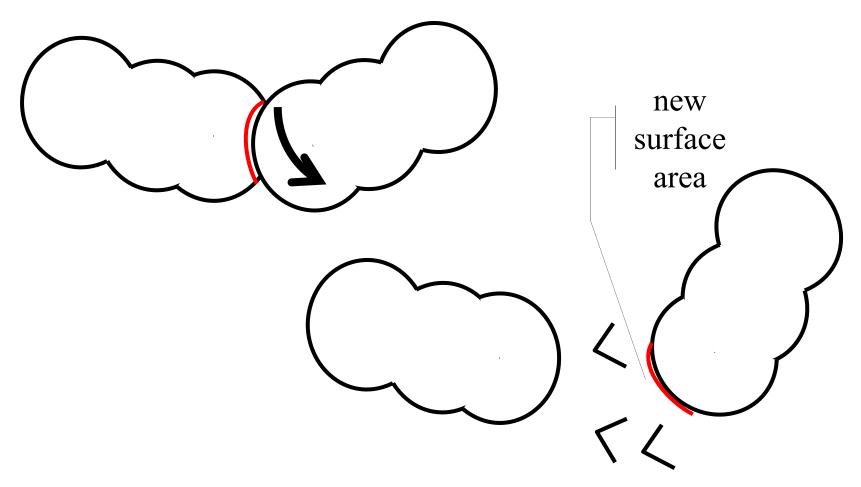
Problem with real physics

- if you use this model, you are obliged to use
 - real charges, real coordinates...
- parameters not perfect
- hard to rationalise repairs

Many effects simultaneously

- charges interacting with water dipoles
- loss of water water interactions
- change of solvent entropy
- change of solute entropy?

Different approach


• less rigorous models

Basis of quick water model

Philosophy

- I can not model water properly
- find a very general way to incorporate effects
- Water makes some atoms happy
- Others do not care too much
- Find some very general way to include water effects
 - whether they are favourable / unfavourable
- what is easiest way to think about water influence?

Atom surface area

- simple model
 - for each atom, energy depends on surface area

Formalising SASA model

- Solvent accessible surface area (SASA)
- for every atom, i $G_i^{solv}(\vec{r}_i) = \gamma_i A_i(\vec{r}_i)$
- G because we no longer have a pure potential energy
- $G_i^{solv}(\vec{r}_i)$ because the energy term depends on coordinates
- γ_i is a specific parameter for each kind of atom
 - for O, N will be negative
 - for CH, CH₂, CH₃ will be positive or near zero
- area, A_i , has to be calculated

Problems

- A_i is difficult to calculate
 - use approximation
- γ_i not easy to estimate

Example SASA calculation¹

- classical atomistic force field
- distance dependent dielectric
- two γ_i parameters, $\gamma_{C,S} = 0.012$ and $\gamma_{O,N} = -0.060$ kcal mol⁻¹

Results

- better than in vacuo
 - deviation from known structure during simulation
 - not too many H-bonds formed
 - radius of gyration ? (how big is protein)
- why do they appear OK? why only two γ_i ?
 - not tested in detail
 - worst problems fixed

summary

- Explicit water is best, but expensive
- We have not discussed dynamic effects
- distance dependent dielectric +
 - SASA style models
 - complementary
- many variations
 - surface accessible volume
 - more γ_i parameters
 - add in reaction field for better long range electrostatics
- changes and flaws in one parameter are hidden by others