Bücher

- Hütt-Dehnert, Methoden der Bioinformatik (eine Einführung)
 - billig, mehrere Kopien in der Bibliothek
- Selzer, Angewandte Bioinformatik
 - minimal OK, mehrere Kopien in der Bibliothek
- Nicht so viel Hilfe für die zweite Hälfte des Semesters

Prüfungen

Beispielfrage bald

6 weeks of me

- Done
 - similarities and alignments
- Coming
 - multiple alignments evolutionary emphasis
 - comparing protein structures not sequences

Bis jetzt

- Man hat eine Sequenz (Protein oder Nukleotid)
- Man will so viel wie möglich finden um
 - Struktur vorherzusagen
 - Funktion vorherzusagen
- Erinnerung

Erinnerung

- warum braucht man Ähnlichkeiten?
- Ähnlichkeiten auf dem Sequenz-Niveau
 - wie man sie findet
 - Alignments
- genaue versus schnelle Methoden
- Bewertungsmethoden
- entfernt Homologen
- Signifikanz
- Protein modellierung
- Jetzt multiple Alignments

Andrew Torda, bioinformatics, sommersemester 2009

Multiple alignments

- mostly for proteins
- what does a set of sequences look like?

- data for a haemoglobin
- summarise this data

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALEKMFLSFPTTKTYFPHFDLSHGSAOVKGHG LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTHVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSADDKANIKAAWGKIGGHGAEYGAEALERMFCSFPTTKTYFPHFDVSHGSAOVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAOVKGOG VLSPADKTNVKAAWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQA VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKSNVKATWDKIGSHAGEYGGEALERTFASFPTTKTYFPHFDLSPGSAOVKAHG VLSPADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTGTYFPHFDLSHGSAQVKGHG VLSSADKNNVKACWGKIGSHAGEYGAEALERTFCSFPTTKTYFPHFDLSHGSAQVQAHG VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSANDKSNVKAAWGKVGNHAPEYGAEALERMFLSFPTTKTYFPHFDLSHGSSOVKAHG VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

...

Conservation / variability

• look at residues 37, 43, 83 and 87

- how do we get these and what does it mean?
- what does it mean for this protein?

Conserved residues

proximity to haem group

Beliefs in multiple sequence alignments

Most proteins found in many organisms

- rarely identical
- where they vary will be connected with function
- how much they vary will reflect evolution (phylogeny)

How many homologues might you have?

- many
 - some DNA replication proteins almost every form of life
 - some glycolysis proteins from bacteria to man
 - ..
- few
 - some exotic viral proteins
 - some messengers exclusively in human biochemistry
 - •

Many sequences - rigorous alignment

- two sequence alignment
 - optimal path through $n \times m$ matrix
- three sequence alignment
 - optimal path through $n \times m \times p$ matrix
- four sequence alignment
 - ...
- excuse to use lots of approximations
 - no guarantee of perfect answer
- reasonable starting point
 - begin with pairs of proteins

Scoring schemes

$$S_{a,b} = \sum_{i=1}^{N_{res}} match(s_{a,i}, s_{b,i})$$

• In pairwise problem

VLSPADKSNVKAGWGQVGAHAGDYGAEAIERMYLSFPSTKTYFPHTDISHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG

- Sum over where N_{res} is sequence length
- $match(s_{a,i}, s_{b,i})$ is the match/mismatch score of sequence a and b at position i
- invent a distance between two sequences like

$$d_{a,b} = 1 - \frac{S_{a,b}}{100 \times N_{res}}$$
 or $d_{a,b} = \frac{1}{S_{a,b}}$

• distance measure – mainly to see which sequences are most similar to each other

Scoring schemes for a multiple alignment

In the best alignment

- 1 is aligned to 2, 3, ...
- 2 to 3,4, ...

- 1 VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
- 2 VITP-EQSNVKAAWGKVGAHAGEYGAEALEQMFLSYPTTKTYFP-FDLSHGSAQIKGHG
- ${\tt 3} \verb| MLSPGDKTQVQAGFGRVGAHAG--GAEALDRMFLSFPTTKSFFPYFELTHGSAQVKGHG| \\$
- 4 VLSPAEKTNIKAAWGKVGAHAGEYGAEALEKMF-SYPSTKTYFPHFDISHATAQ-KGHG
- 5 -VTPGDKTNLOAGW-KIGAHAGEYGAEALDRMFLSFPTTK-YFPHYNLSHGSAOVKGHG
- 6 VLSPAEKTNVKAAWGRVGAHAGDYGAEALERMFLSFPSTQTYFPHFDLS-GSAQVQAHA
- 7 VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

Mission: for N_{seq} sequences

• S_{ab} : alignment score sequences a and b

$$score = \sum_{b \neq a}^{N_{seq}} \sum_{a=1}^{N_{seq}} S_{a,b}$$

- not quite possible
 - if I move sequences 4 and 5, may make a mess of 5 and 2

Aligning average sequences

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VITPAEKTNVKAAWGKVGAHAGEYGAEALEQMFLSYPTTKTYFPHFDLSHGSAQIKGHG

and

IITPGDKTNVKAAFGKVGAHGGEYGAEALDRMFISFPSTKTYYPHFDLSHASAQVKAHG VITPAEQTNIKGAWGQIGAHAGDYAADALEQMFLSYPTSKTYFPYFDLTHGSAQIKGHG VITPAEKTQVKAAWGKVGGHAGEYGAEAIEQMFLTYPTTQTYFPHFELSHGTAQIKGHG

- at each position
 - use some kind of average in scoring
 - if a column has 2×D and 1×E score
 - score as D (cheating but fast)
 - score as 2/3 D + 1/3 E
- later.. call the average of S1 and S2: av(S1, S2)

Summarise ingredients

- pairwise scores + distances
- ability to align little groups of sequences

Progressive alignments

- known as guide tree / progressive method
- steps
 - build a distance matrix
 - build a guide tree
 - build up overall alignment in pieces

Progressive alignment - tree

S1 ATCTCGAGA

S2 ATCCGAGA

S3 ATGTCGACGA

S4 ATGTCGACAGA

S4

S5

S5 ATTCAACGA

Compute pairwise alignments, calculate the distance matrix

S1S2S3

S4

S5

_				
.11	ı			
.20	.30	-		
.27	.36	.09	_	
.30	.33	.23	.27	_

S3

calculate guide tree

S1

S2

Multiple alignment from guide tree

	align S S1 S2	1 with S2 ATCTCGAGA ATC-CGAGA	
	align S	align S3 with S4	
	S3	ATGTCGAC-GA	
	S4	ATGTCGACAGA	
	align a	align av(S1,S2) with av(S3,S4)	
	S1	ATCTCGAGA	
• av(S1,S2) is average of S1 and S2	S2	ATC-CGAGA	
	S3	ATGTCGAC-GA	
	S4	ATGTCGACAGA	
	align a	v(S1,S2,S3,S4) with S5	
	S1	ATCTCGAGA	
 gaps at early stages remain 	S2	ATC-CGAGA	
nrohloma	S3	ATGTCGAC-GA	
• problems	S4	ATGTCGACAGA	
 S1/S2 and S3/S4 good 	S5	AT-TCAAC-GA	
 no guarantee of S1/S4 or S2/S3 			

Problems and variations

S1

S2

S3

S4

S5

_				
.11	ı			
.20	.30	-		
.27	.36	.09	1	
.30	.33	.23	.27	_
	S2	S3	S4	S5

What order should we join?

- pairs are easy (S1+S2) and (S3+S4)
- which next?

Real breakdown

S1 S2 S3 S4 S5

- S1 and S2 are multi-domain proteins
 - S3 is not really related to S4 or S5
 - distance matrix elements are rubbish

Given an alignment

How reliable / believable?

- set of very related proteins (an enzyme from 100 mammals)
 - no problem
- diverse proteins (an enzyme 100 organisms, bacteria to man)
 - maybe lots of little errors
- can break completely (domain example)

Is the tree a "phylogeny"? A reflection of evolution?

more later

Measuring conservation / entropy

• Gibbs entropy

 $S = -k \sum_{i=1}^{N_{states}} p_i \ln p_i$

- how much disorder do I have?
- in how many states may I find the system?
- Our question
 - look at a column how much disorder is there?

VLSPADKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGVITP-EQSNVKAAWGKVGAFAGEYGAEAIEQMFLSYPTTKTYFP-FDLSHGSAQIKGHGMLSPGDKTQVQAGFGRVGAFAG-GAEAVDRMFLSFPTTKSFFPYFELTHGSAQVKGHGVLSPAEKTNIKAAWGKVGAFAGEYGAEAAEKMF-SYPSTKTYFPHFDLSHATAQ-KGHG-VTPGDKTNLQAGW-KIGAFAGEYGAEALDRMFLSFPTTK-YFPHFDLSHGSAQVKGHGVLSPAEKTNVKAAWGRVGAFAGDYGAEAGERMFLSFPSTQTYFPHFDLS-GSAQVQAHAVLSPDDKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

no much disorder

Calculate an "entropy" for each column

Entropy

- We can forget k (Boltzmann just scaling) $S = -\sum_{i=1}^{N_{states}} p_i \ln p_i$

- We have a protein
 - 20 possible states
- What if a residue is always conserved?
 - $S = \ln(1) = 0$ (no entropy)
- What if all residues are equally likely?

•
$$p_i = 1/20$$

$$S = -\sum_{i=1}^{20} \frac{1}{20} \ln \frac{1}{20} = -20 \cdot \frac{1}{20} \ln \frac{1}{20}$$

$$\approx 3$$

my toy alignment..

Entropy

- first column is boring
- second

•
$$p_{\rm D} = 5/7$$

•
$$p_{\rm E} = 1/7$$

•
$$p_{\rm N} = 1/7$$

VLSPADKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VITP-EQSNVKAAWGKVGAFAGEYGAEAIEQMFLSYPTTKTYFP-FDLSHGSAQIKGHG
MLSPGDKTQVQAGFGRVGAFAG--GAEAVDRMFLSFPTTKSFFPYFELTHGSAQVKGHG
VLSPAEKTNIKAAWGKVGAFAGEYGAEAAEKMF-SYPSTKTYFPHFDLSHATAQ-KGHG
-VTPGDKTNLQAGW-KIGAFAGEYGAEALDRMFLSFPTTK-YFPHYNLSHGSAQVKGHG
VLSPAEKTNVKAAWGRVGAFAGDYGAEAGERMFLSFPSTQTYFPHFDLS-GSAQVQAHA
VLSPDDKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

$$S = -\left(\frac{5}{7}\ln\frac{5}{7} + \frac{1}{7}\ln\frac{1}{7} + \frac{1}{7}\ln\frac{1}{7}\right)$$

$$\approx 0.8$$

• example from start of this topic

Entropy from DNA

- exactly as for proteins
- will numbers be larger or smaller?

• max possible entropy
$$S = -4\left(\frac{1}{4}\ln\frac{1}{4}\right)$$

= $-\ln\frac{1}{4}$
 ≈ 1.4

Haemoglobin conservation

• look at residues 37, 43, 83 and 87

- 4 residues (maybe more) stand out as conserved
 - why?

Conserved residues in haemoglobin

- 3 of the sites are easy to explain
 - interact with haem group
- Look at fourth site
 - proline
 - end of a helix

- what is special about proline?
 - no Hbond donor
- here if it mutates, maybe haemoglobin does not fold

Conservation for structure

- some residues have very special structural roles
 - proline not an H-bond donor
 - often end of a helix
 - glycine can visit part of $\varphi \psi$ plot
 - found in some turns
- are all gly residues so important?
 - NO they occur in many places sometimes in turns
- are all pro residues very conserved? No

Conservation for function

- in a serine protease
 - always a "catalytic serine"
 - can it mutate? Not often
- in haemoglobin residues necessary for binding haem
 - can they mutate? rarely
 - changes properties of haemoglobin (bad news)
- dogma
 - residues in active site will be more conserved than other sites

Important summary

- conservation may reflect
 - important function
 - structural role
- mutagenesis / chemistry
 - what residue may I change to allow binding to a solid substrate? (for biosensor/immobilized enzyme?)
 - I want to try error prone PCR to select for new enzyme activity which sites might I start with (active site)
- drug design example
 - target is an essential protein (basic metabolism, DNA synthesis, protein synthesis..)
 - is there some set of sequence features common to pathogen, different to mammalian protein?

Evolution – do not trust conservation

Imagine: two possible systems for some important enzyme

- 1. active site fits to essential biochemistry
 - any mutation you lose
 - you see active site residues as conserved in a conservation plot
- 2. maybe enzyme is not absolutely perfect
 - some mutations kill you
 - some mutations OK
 - site does not appear perfectly conserved

If you have the choice, where would you evolve to?

- 1. very fragile
- 2. likely to survive mutations

Conservation – how meaningful?

- example sequence (1ab4, DNA gyrase)
- find 100 close homologues (mostly > 80% similarity)
 - calculate conservation
- find 2500 close homologues (mostly > 50 % similarity) calculate conservation

• lots of conserved sites 25

you can get the answer you want

Phylogeny / Evolution

Purely academic? For fun? Not always

- possibly useful in explaining disease propagation
 - where did HIV come from?
 - where did the flu pandemics come from?
 - virus infects banana crop where did it come from ?
- previously we had a "guide tree"
 - did (S1,S2) and (S3,S4) share an ancestor but not S5?

• there may be other similar trees which could be evolutionary paths

S1

S2

S3

S4

S5

Evolutionary time

- compare two DNA sequences see
 - 1 mutation (represents time t)
 - 2 mutations (time 2*t*)
 - 3 mutations (time 3*t*)...
 - No!
- After some evolution
 - A \rightarrow C \rightarrow G two events (although looks like A \rightarrow G)
 - A \rightarrow C \rightarrow G \rightarrow C \rightarrow A looks like zero mutations

- If I have infinite time
 - all bases / residues equally likely
 - $p_{mut} = 3/4 = 0.75$ (DNA) or $p_{mut} = 19/20$

Mutation probability

- time units are rather arbitrary
- how would I estimate time?

$$t \propto -\ln\left(1 - \frac{4}{3} p_{mut}\right)$$

- p_{mut} ? count n_{mut} / n_{res}
- scaling of t not so important (relative time)
- for short times, p_{mut} changes fast
 - for small t, distances will be more reliable
 - as will be alignments
- is this enough for phylogeny?
 - what about reliability?

Problems in phylogeny

- not all sites mutate equally quickly
- not all species mutate equally quickly

- blue appears to have branched off earlier
- less drastic..

Problems in trees

- blue evolves a bit faster
- when we make average sequences
 - $av(S1, S_{blue})$ and sub-tree seems further from other sequences
 - all nearby nodes will be distorted

Problems estimating time

- mutation rates vary wildly
 - changing environments pH, temperature,...
- can the distances ever be accurate?
- imagine time t is such that $p_{mut}=0.25$
 - we have random events
 - sometimes you see 23% mutation, sometime 28%
- time estimates will never be accurate
- maybe we cannot find the correct tree
 - can we roughly estimate reliability?

Reliability

- think of first alignment
- what would happen if you deleted a column?

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
VITP-EQSNVKAAWGKVGAHAGEYGAEAIEQMFLSYPTTKTYFP-FDLSHGSAQIKGHG
MLSPGDKTQVQAGFGRVGAHAG--GAEAVDRMFLSFPTTKSFFPYFELTHGSAQVKGHG
VLSPAEKTNIKAAWGKVGAHAGEYGAEAAEKMF-SYPSTKTYFPHFDISHATAQ-KGHG
-VTPGDKTNLQAGW-KIGAHAGEYGAEALDRMFLSFPTTK-YFPHYNLSHGSAQVKGHG
VLSPAEKTNVKAAWGRVGAHAGDYGAEAGERMFLSFPSTQTYFPHFDLS-GSAQVQAHA
VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

- if the data is robust /reliable
 - not much
- if the tree is very fragile /sensitive
 - tree will change
- better
 - repeat 10^2 to 10^3 times
 - delete 5 to 10 % of columns
 - copy random columns so as to have original size
 - recalculate tree

Monster example

- generate lots of trees
- for each subtree
 - see how often it is is present
- example from cover of nature

Monster calculation

- we are usually placed near Hühne
- we are not so reliably placed with little worms
- how long does this take?
 - months on 120 processors
- a more applied example..

Influenza virus phylogeny

Rambaut, A., .. Holmes, C. The genomic.. influenza A virus, Nature 452, 1-6, 2008

Summary

- multiple sequence alignment conservation
 - find important residues (function or structure)
 - can quantify conservation
- relations between most similar proteins are most reliable
- best tree is never found
 - too difficult algorithmically
 - lots of errors evolution is a random process
- rough idea of reliability
- quick tree possible for hundreds of sequences
- more complicated methods only practical for smaller numbers of sequences

Protein structures and comparisons

Ultimate aim

- how to find out the most about a protein
- what you can get from sequence and structure information

On the way...

- remote similarities between proteins
- sequence versus structural similarity
- Detour
 - protein coordinates representation, accuracy
- measures for similarity of coordinates
- Later
 - classifications of proteins

Sequence and structure similarity

Claim from before

• if two sequences are similar – they are related – structures are similar

Question

• if two sequences are different - are their structures different?

Remote similarities

No sequence similarity – similar structures

- Are these rare?
 - easy to find 100s of examples
- does this agree with previous claims?
 - dot in diagram two structures seem different

- if sequences are similar
 - structures will be similar
- if sequences are different
 - one does not know

Structure versus sequence similarity

- Clear statement
 - sequence changes faster than structure
- Reason? Unclear
 - possibility..
- protein function depends on having groups in orientation in space

Why can sequence change

residue changes ? OK structure changes ? Bad

• a view of molecular evolution...

Simple view of molecular evolution

mutate continuously

- mutations which are not lethal
 - may be passed on (fixed)
- if structure changes
 - protein probably will not function
 - not passed on

Result

- evolution will find many sequences
 - compatible with structure
 - compatible with function
- how else would we see this?

Sequence vs structure evolution

Sayings..

- Sequence and structure space
 - sequence space is larger
 - many different sequences map to similar structure
- sequence evolves faster than structure
- Truths...

Practical Consequences

Sequences of proteins are nearly always known

- similar sequence
 - usually similar structure, similar function
- sequences not (obviously) related
 - maybe similar structure
 - maybe similar function
- What if structures are known?

Sequence and structure similarity

			structures				
			similar	different			
sequence	similar	frequency	always	never			
	Sillilai	function similar	yes				
	different	frequency	often	normal			
		function similar	sometimes	no			

• summarise from a different point of view

Sequence vs structure similarity

When comparing proteins

• more information is always better (sequence, structure, function)

Similar sequences

- structure and function will be similar
 - remember threshold graphs from earlier

Similar structures, different sequences

- evolutionary relationship implied but
 - bigger evolutionary distance
- not enough to be confident about function

Comparing proteins

- Representation of proteins
- comparison
- classification (later)

• Proteins are not as smooth as we draw them • very discrete set of atoms

11/06/2009 [51]

Protein coordinate files

Detour - Protein data bank (www.rcsb.org)

- only significant database of protein coordinates
- deposition of coordinates often requirement of publication
- $\approx 60 \times 10^3$ structures
 - huge redundancy (> 500 T4 lysozyme)
- biases: 1. soluble, globular proteins 2. interesting proteins
- X-ray crystallography $\approx 85 \%$
- NMR $\approx 14 \%$ (more in smaller proteins)
- File formats standardisation boring but important
 - all programs agree on a format exchange of information
 - two PDB formats
 - one common flat files..

Protein coordinate files

What would you expect?

- Define the chain direction
 - N to C terminus
- within each residue
 - order of atoms
 - backbone
 - sidechain going away from backbone
- unit Å
- usually no Hydrogens

PDB File

ATOM	1	N	ARG 2	A 1	26.465	27.452	-2.490	1.00 25.18	N
ATOM	2	CA	ARG 2	A 1	25.497	26.862	-1.573	1.00 17.63	С
ATOM	3	C	ARG 2	A 1	26.193	26.179	-0.437	1.00 17.26	С
ATOM	4	0	ARG 2	A 1	27.270	25.549	-0.624	1.00 21.07	0
ATOM	5	CB	ARG 2	A 1	24.583	25.804	-2.239	1.00 23.27	С
ATOM	6	CG	ARG 2	A 1	25.091	24.375	-2.409	1.00 13.42	С
ATOM	7	CD	ARG 2	A 1	24.019	23.428	-2.996	1.00 17.32	С
ATOM	8	NE	ARG 2	A 1	23.591	24.028	-4.287	1.00 17.90	N
ATOM	9	CZ	ARG 2	A 1	24.299	23.972	-5.389	1.00 19.71	С
ATOM	10	NH1	ARG 2	A 1	25.432	23.261	-5.440	1.00 24.10	N
ATOM	11	NH2	ARG 2	A 1	23.721	24.373	-6.467	1.00 14.01	N
ATOM	12	N	PRO 2	A 2	25.667	26.396	0.708	1.00 10.92	N
•••									
ATOM	38	N	CYS 2	A 5	23.095	22.004	2.522	1.00 7.84	N
ATOM	39	CA	CYS 2	A 5	22.106	21.863	1.467	1.00 9.61	С
ATOM	40	C	CYS 2	A 5	22.192	20.518	0.830	1.00 10.97	С
ATOM	41	0	CYS 2	A 5	21.230	20.068	0.167	1.00 9.33	Ο
ATOM	42	CB	CYS 2	A 5	22.358	22.904	0.371	1.00 10.97	С
ATOM	43	SG	CYS 2	A 5	22.145	24.592	0.888	1.00 12.56	S

- Note coordinates
 - three decimal places often 5 significant digits

 \mathcal{X}

 \mathcal{Y}

PDB File

ATOM	1	N	ARG	А	1	26	5.465	27.4	452	-2.4	490	1.00	25.1	8	N
ATOM	2	CA	ARG	A	1	25	5.497	26.8	362	-1.5	573	1.00	17.6	3	С
MOTA	3	С	ARG	A	1	26	5.193	26.1	179	-0.4	437	1.00	17.2	6	С
ATOM	4	0	ARG	A	1	27	7.270	25.5	549	-0.6	624	1.00	21.0	7	0
ATOM	5	СВ	ARG	A	1	24	1.583	25.8	304	-2.2	239	1.00	23.2	7	С
MOTA	6	CG	ARG	A	1	25	5.091	24.3	375	-2.4	409	1.00	13.4	2	С
MOTA	7	CD	ARG	A	1	24	1.019	23.4	128	-2.9	996	1.00	17.3	2	С
ATOM	8	NE	ARG	A	1	23	3.591	24.0	28	-4.2	287	1.00	17.9	0	N
MOTA	9	CZ	ARG	A	1	24	1.299	23.9	972	-5.3	389	1.00	19.7	1	С
ATOM	10	NH1	ARG	A	1	25	5.432	23.2	261	-5.4	440	1.00	24.1	0	N
ATOM	11	NH2	ARG	A	1	23	3.721	24.3	373	-6.4	467	1.00	14.0	1	N
ATOM	12	N	PRO	A	2	25	5.667	26.3	396	0.5	708	1.00	10.9	2	N
•••															
ATOM	38	N	CYS	A	5	23	3.095	22.0	004	2.5	522	1.00	7.8	4	N
MOTA	39	CA	CYS	A	5	22	2.106	21.8	363	1.4	467	1.00	9.6	1	С
MOTA	40	C	CYS	A	5	22	2.192	20.5	518	0.8	830	1.00	10.9	7	С
ATOM	41	0	CYS	A	5	21	L.230	20.0	068	0.2	167	1.00	9.3	3	0
ATOM	42	СВ	CYS	A	5	22	2.358	22.9	904	0.3	371	1.00	10.9	7	С
ATOM	43	SG	CYS	A	5	22	2.145	24.5	592	0.8	888	1.00	12.5	6	S
		and the second													

• Given some coordinates – how to compare them?

residue

mobility

Comparing coordinates

• These are very similar

- These are clearly related, less similar
- We want to put numbers on this property

First some notation

- We have spoken of x, y, z coordinates. Easier..
 - vector \vec{r} or for atom i, \vec{r}_i
 - for two proteins let us have position *i* in protein *a* and *b*
 - \vec{r}_i^a and \vec{r}_i^b

Comparing two proteins

- take one atom (C^{α}) from residue i
- what do I know from the picture?
- if my two proteins are similar $\vec{r}_i^a \vec{r}_i^b$ will be a short vector
- for each residue *i*
- define $|\vec{r}_i^a \vec{r}_i^b|$ distance between \vec{r}_i^a and \vec{r}_i^b
- I want a single number that tells me
 - usually
 - how close is a residue in a to the corresponding residue in b
 - think of the set of distances $|\vec{r_i}^a \vec{r_i}^b|$
 - how spread out is this population of distances?
 - like a standard deviation (standard Abweichung)

Root mean square (rms)

• normal formula for standard deviation $\sigma_x = \left(\frac{1}{N}\sum_{i=1}^N (x_i - \overline{x})^2\right)^{\frac{1}{2}}$

something similar for coordinates

$$r_{rmsd} = \left(\frac{1}{N_{res}} \sum_{i=1}^{N_{res}} \left| \vec{r}_i^a - \vec{r}_i^b \right|^2 \right)^{1/2}$$

- where proteins a and b have N_{res} residues
- rmsd is "root mean square difference"
- complications

Before calculating rmsd

- two very similar proteins
 - coordinates are in different orientations
 - not on top of each other

- what are the orientations of files in PDB?
 - totally arbitrary
- first some other steps

Superposition of coordinates

First problems with rmsd

- Before calculating *rmsd*
 - coordinates must be "superimposed" (translation + rotation)
- if you and I use slightly different superpositions
 - our *rmsd* values (similarity) will be different

Meaning of rmsd

- units Å
- rmsd is size dependent
 - 5 Å in a small protein (50 residues) will not look similar
 - 5 Å in a big protein (250 residues) will look similar

Difficulty with rmsd

these two proteins have the same number of residues

$$r_{rmsd} = \left(\frac{1}{N_{res}} \sum_{i=1}^{N_{res}} \left| \vec{r}_i^{\ a} - \vec{r}_i^{\ b} \right|^2 \right)^{\frac{1}{2}}$$

• if i = 1, 2, 3, ... we use residue 1, 2, 3 in both proteins

• these two proteins have slightly different numbers of residues

we cannot compare residue 1 to 1, 2 to 2...

Proteins of different sizes – first version

• Problem - for each residue *i* in protein *a* we need matching residue in protein b

• One approach

Selecting residues for alignment

• take the sequence of each protein, calculate alignment

```
ACDEFG-IK-MNP..
A-DEGGHIKLMNP..
```

use these residues
ACDEFG-IK-MNP...
A-DEGGHIKLMNP...

- will find corresponding residues
- will allow for missing / inserted residues
- used in some programs chimera
- problem ... sequence similarity may be near nothing.
 - a sequence based alignment may be very wrong

Selecting residues for alignment - better

- We need corresponding residues
 - some kind of alignment
- can one do an alignment based on structures?
- Answer: yes but..
 - no guaranteed correct solution
 - many different methods

Summary of comparing two structures

- we want a single measure of similarity (like *rmsd*)
- this requires we have a set of corresponding residues in the two proteins
- if there is good sequence similarity use it
- naïve methods will not give the best superposition
- structure-based alignments can be calculated
 - require approximations
 - often slow
 - can not guarantee the best answer

Summary of everything

- Similarities
 - Sequence level finding them
 - Multiple sequence alignments leads to evolution
 - Structure
 - Harder to find more valuable for remote relations