Simulations / statistical mechanics / ...

Andrew Torda, April 2010

Topics

- very simple stat mechanics
- Monte Carlo
- molecular dynamics

Favourite books

- "Understanding Molecular Simulation", Frenkel and Smit, Academic Press, 2002
- "Computer Simulation of Liquids", Allen & Tildesley, Oxford Science Publications, 1990

Misc background

- simpler than last year
 - 2nd law mostly removed

Plan for today

- 45 min lecture
- 45 Übung / lecture
 - how to calculate a force

Concepts

- potential energy
- work
- entropy
- free energy

Nomenclature

- T temperature
- *N* all kinds of things, usually number of particles
- k and k_B Boltzmann's constant
- R gas constant = $k N_a$
- S entropy
- F Helmholtz (NVT)
- G (Gibbs) free energy (NPT)
- *U* internal energy

- H enthalpy = U + pV
- E energy, E_{kin} , E_{pot} , E_{bond} , ...
- Q heat
- W work
- V volume
- $\Omega(x)$ number of states of system with property (x)

Potential energy

• electrostatic
$$U(r) = \frac{q_1 q_2}{4\pi \varepsilon_0 r}$$

• gravity
$$U(r) = \frac{Gm_1m_2}{r}$$

- elastic, ...
- potential energy of a protein...
 - where would the protein like to be ?

More than potential energy

configurations (r)

• in more detail ...

Simulation and formal statistical mechanics

Quantified?

- entropy and free energy
- Dumb simulation, preferring to go downhill
- should show how probabilities (entropy) are balanced against energy

Heat Capacity example

- change in rate of heating? Boiling / phase change
- proteins ? DNA ? folding / melting
- easy to simulate ?
 - only if certain rules are followed
 - (example) no heat can leave our system
- Important
 - simulations are valid if they follow rules

History

- Statistical mechanics
 - derived by summing up properties of individual particles
- thermodynamics
 - less emphasis on individual particles
- lots of formulae which cannot be completely applied to proteins
 - sums over infinite volumes, numbers of particles, time

Rules and limitations

• Always at equilibrium

First Law

Conservation of energy

- $dU = \Delta Q + \Delta W$
- *dU* change in internal energy
- ΔQ heat given to system
- ΔW work done on system
- example of work...

Work on a gas

•
$$dU = \Delta Q + \Delta W$$

= $\Delta Q - P \Delta V$

- others
 - charges in electric fields, surface tension / area,

Entropy

- second law of thermodynamics
 - you tend to become disordered
- role in free energy
- formula for simple systems
- Disorder, how many ways can the system arrange itself...
 - depends on energy (and volume and number of particles)
- How many states can the system have / occupy (specified *E*) ?
 - $\Omega(E)$
 - $S = k \ln \Omega(E)$

Number of states $\Omega(X)$

- a bit more energy? more states
 - more.. solid →liquid .. many many more

Gibbs

What if states are not equally likely?

- N_{state} states with distribution
- p_1 =0.999, p_2 =0.00001, p_3 =0.00001,
- just as if the system had one state
 - low entropy
- $p_1=0.5, p_2=0.1, p_3=0.1, \dots$
 - a bit more entropy, but still very much dominated by p_1
- p_1 =0.01, p_2 =0.01, p_3 =0.01,
 - lots of states, all equally likely
 - lots of entropy

In general

$$S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$$

Gibbs entropy!!

Applicability

- can one really estimate? $S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$
 - liquid.. no
 - protein ..no
- with a simulation?
 - too many states
 - approximations to ΔS later
- simple system (grid / lattice)
 - yes .. later

Second law

disorder increases

$$dS = \frac{dQ_{rev}}{T} \ge \frac{dQ}{T}$$

S entropy Q heat

- in an irreversible process, S of system always increases
- useful consequence, for small changes
- dQ = TdS
- Intuitive?
 - I heat the system, temperature does not go up much
 - making water boil

Entropy and other properties

• if
$$dQ = TdS$$

$$dU = dQ + dW$$
$$= TdS + dW$$
$$= TdS - PdV$$

- what if we fix volume ? $\left(\frac{dU}{dS}\right)_{V} = T$
- Typical technique...
 - fix V or P or T and look at the relations
 - fixed (N, V, T) Helmholtz
 - fixed (N, V, P) Gibbs

Units

- more arrangements = more entropy
- behaving like energy
- entropy units
 - energy / temp (JK⁻¹)

- from picture, we do not care about U, introduce F (Helmholtz)
- F = U TS

Free Energy types

•
$$F = U - TS$$

•
$$G = U - TS + pV$$

= $H - TS$

- often we look at changes
- $\Delta G = H T \Delta S$

- is my picture valid?
 - not strictly (what if system can hop around ?)

Where can we use this?

- what is the entropy of a molecule?
 - sounds easy
 - really...
 - entropy depends on solvent (system)
- entropy of a conformation?
 - has no meaning

$$S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$$

- is it additive?
 - sometimes

Adding entropy

- entropy is extensive
 - $S_{AB} = -k \ln (\Omega_A \Omega_B) = -(k \ln (\Omega_A) + k \ln (\Omega_B)) = S_A + S_B$
- assumption
 - for my new system A and B weakly interact
- what if they interact?
 - putting A in state 1 changes probability of B in state 1
 - what if it just changes the probability ? $S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$ $\Omega_{AB} \neq \Omega_A \Omega_B$

Adding entropy

• I cannot usually add the entropy of two systems to get the entropy of new total system

• can I decompose entropy?

May we decompose entropy?

- Remember energy in proteins
- $E_{tot} = E_{bonds} + E_{vdw} + E...$
- $S_{tot} = S_{bonds} + S_{vdw} + \dots$?
 - no
 - makes no sense unless
 - bonds are decoupled from atoms and angles...
- Different parts of system
 - $S_{ligand} + S_{solvent} + \dots$
- obviously they do interact
- Free energies
 - G_{solv} , $G_{protein}$, G_{ligand} , G_{bonds} not really legal

Decomposing Free Energy

- Would you see this in the literature?
- Example
 - in protein $X \text{ asp} \rightarrow \text{asn mutation}$ (COO- to CON)
 - protein becomes more stable
 - stability depends on $\Delta G_{\text{fold} \rightarrow \text{misfold}}$
 - the protein is more stable due to a change in electrostatic free energy

More examples – particle interactions

- You have a scoring function for interactions
- usually called ΔG

•
$$\Delta G_{tot} = \Delta G_{HB} +$$
 H-bonds ionic

why is this bad nomenclature ?

Entropy of one conformation?

- can I talk about ΔG_1 vs ΔG_2 ?
 - $S = -k \ln \Omega$
 - but Ω depends on all accessible states
- if binding 1 can change to binding 2, they are both part of Ω
- I do believe we can talk about U_1 and U_2

Meaning of labelled free energies

- if we have "free energy contributions"
 - we have entropy contributions
- ΔG_{HB} implies $H_{HB} + \Delta TS_{HB}$
- ΔG_{ionic} implies $H_{ionic} + \Delta TS_{ionic}$
 - what is S_{ionic} ? $S = -k \ln \Omega_{ionic}$
 - no meaning
- one cannot have "free energy contributions"

independence of terms

even without labelled entropies

- only possible if there is no interaction between 1 and 2
- additivity of free energies is widely used (usually wrong)

Stop and summarise

- Internal energy U things like springs
- Enthalpy H includes pressue
- Gibbs free energy G what we usually use
- Free energy lets us incorporate the concept of what is most likely
- Entropy is not additive between systems that interact

Boltzmann distribution – two states

- System with two energy levels
- I know the temperature and energy difference
- How likely is system to sit in E_1 ? E_2 ?
 - System is very cold,
 - ΔE seems big
 - System is very very hot $T \rightarrow \infty$
 - ΔE does not matter, seems small
- Relative populations (probabilities) p_1, p_2

$$\bullet \quad \Delta E = E_2 - E_1$$

$$\frac{p_1}{p_2} = e^{\Delta E_{kT}}$$

sometimes

$$\frac{p_1}{p_2} = e^{\beta \Delta E}$$

Boltzmann distribution

- what is the probability of a certain energy level?
- depends on all available levels

$$p_i = \frac{e^{-\beta E_i}}{\sum_{i} e^{-\beta E_j}}$$

• name of bottom ... partition function, Z

$$Z = \sum_{i} e^{-E_{i}/kT}$$

• does this agree with previous slide?

Consequences of Boltzmann distribution

- At absolute zero
 - only lowest energy state is populated
- At low temperatures
 - low energy states favoured
- High temperature
 - system can visit high energy regions
- Infinite temperature
 - all states equally likely
- For two states (bound / unbound)

$$\frac{p_1}{p_2} = e^{\frac{\Delta E}{kT}}$$

• exponential term means populations quickly become big/small

How big are energy differences?

- simplest case, equal populations
- $p_1 = p_2$

$$1 = e^{\Delta E_{kT}}$$

$$\ln 1 = \frac{\Delta E_{kT}}{kT}$$

$$\Delta E = 0$$

- $k=1.38\times10^{-23}$ J K⁻¹, but use
- $R = k N_A$ = $k 6.02 \times 10^{23} \text{ J K}^{-1} \text{mol}^{-1}$ = $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

$$\frac{p_1}{p_2} = e^{\frac{\Delta E}{kT}}$$

examples of populations

- for 99:1 at 300 K
 - $\Delta E=11 \text{ kJ mol}^{-1}$

$$\frac{p_1}{p_2} = e^{\Delta E/kT}$$

$$\ln \frac{p_1}{p_2} = \frac{\Delta E}{kT}$$

$$\Delta E = kT \ln \frac{p_1}{p_2}$$

Drugs

• Dissociation constant k_d of drug D to protein P

$$k_d = \frac{[D][P]}{[DP]}$$

- nanomolar drugs are 10⁻⁹,
- difference between 1 and 10 nm binding drug
 - 46 vs 52 kJ mol⁻¹
- topic will return later

Barrier crossing

- How likely are you to cross a barrier?
 - p_{red} VS p_{blue}

- all the blue copies of system will not make it over $E_{barrier}$
- red population is small, even for $E_{barrier} \sim kT$
- but explains why $\ln(rate) \propto T$

where next?

- how to see some of these properties by simulating
- how simulating depends on these properties