This semester

- Models mostly proteins
 - from detailed to mo re abstract models

Books

- None necessary
 - for my group and Prof Rarey
 - "Molecular Modelling: Principles and Applications" Leach, Andrew
 - some later material (Monte Carlo) from
 - "Understanding Molecular Simulation", Frenkel and Smit

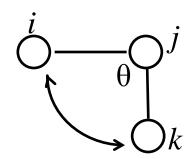
Grand Plan

- Models for proteins (mostly)
 - from detailed to less details
- Energies
- Dynamics
- Basis of them
- How to work with them
 - simulations, calculations
 - protein folding, evolution
- What kind of model is appropriate for different problems?

Themes

- atomistiche Energie-Modelle
- Energie / Freie Energie
- Monte Carlo (MC)
- Molecular Dynamics Simulations (MD)
- Applications and Extensions of MC and MD
- Advanced Monte Carlo
- Water
- Coarse Grain / Mesoscopic / low resolution methods
- Lattice Methods
- Evolution
- Protein Folding

Organization


- In prinzip
 - 2 × Vorlesung
 - 1 × Vorlesung
 - 1 × Übung
- In Praxis
 - $2 \times Vorlesung + 2 \times Vorlesung$ or
 - $2 \times \text{Vorlesung} + 2 \times \text{Übung}$
- People
 - Marco Matthies
- Sprache
 - Sind wir mit Englisch wirklich glücklich?

Some questions

- 3 bonded atoms push atom *k* left
 - which atoms will feel a force?

- the conserved sites are most important
- is this true?

- Can you compare the free energy of two conformations of
 - a drug
 - a protein?
- to be answered during the semester

Do I have to memorise all the formula?

- Very few
 - Coulombs law
 - example form of energy for bonds and angles
 - Boltzmann distribution
 - definition of entropy
 - relationship of free and potential energy
- Most other examples will be derived

Atomistic Energy Models

- Why do we need models?
- Previous lectures need for low energy configurations
 - really needs definition of energy
- Can we define energy?
 - for very simple systems yes
 - for more complex systems
 - only approximations
- Need to know when approximations are small and when bad
 - are charges on atoms like fixed charges?
 - not for chemical reactions
 - are bonds like springs?

Is energy sufficient?

Does the world care about potential energy?

• no. Really cares about free energy G = U - TS (usually speak of ΔG)

Approach to free energy

- calculate potential energy "U" with a model
- get entropy "S" from some sampling method (often implicit)

Need good models for energy

Definitions

- This topic is classical / atomistic
- Often referred to as "molecular mechanics"
- quantum effects are not reproduced

Different levels of models

ab initio very detailed QM semi-empirical atomistic coarse grain continuous lattice very coarse big molecule as (colloids, single point diffusion)

Why we like atomistic models

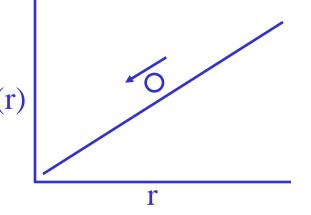
- intuitive
 - how do we draw structures? store coordinates?
- atoms sometimes correspond to measurable properties
 - x-ray crystallography, NMR
- predicting some dynamics
- interactions between proteins, proteins + ligands

What do we want to be able to do?

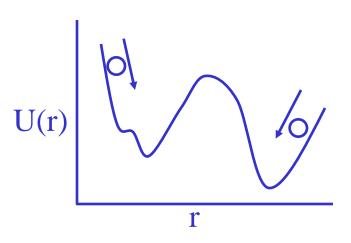
- Often to simulate a system
 - Monte Carlo, molecular dynamics (MD)
 - details later, for MD we need
 - F = ma (Newton), a = F/m gives us acceleration and
 - F = -dU/dr or better $\vec{F} = -\frac{dU}{d\vec{r}}$
 - important.. friendly energies have proper derivatives

Force fields in general

- What is a force field?
 - the set of equations / formulae that tell us about the force acting on a particle
 - classic example
 - I have charge
 - if I bring another charge near, it feels a force due to the first
 - what is the equation telling me about the energy?


$$U(r_{ij}) = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{q_i q_j}{r_{ii}}$$

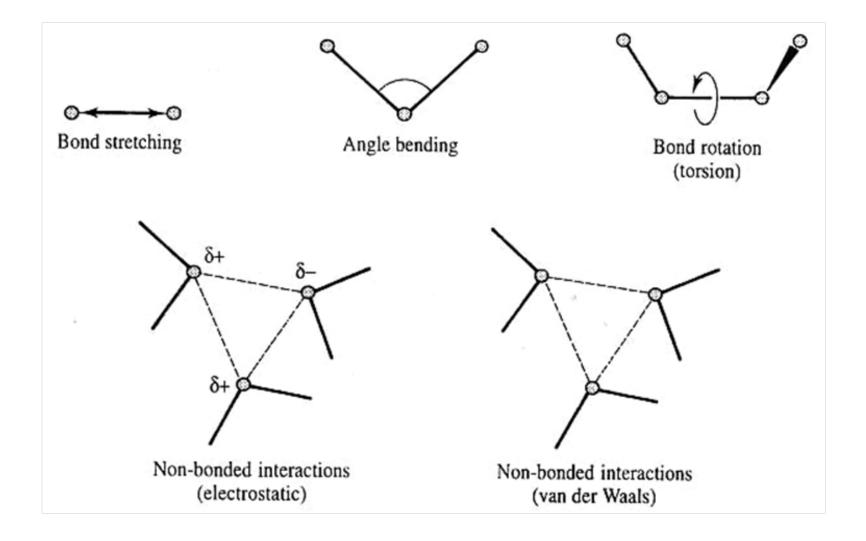
• and the force...


Force fields, energies, derivatives

- Important rule $\vec{F} = -dU/d\vec{r}$
- a toy example, one dimension $U(\vec{r}) = k\vec{r}$
- force is

$$\vec{F} = -\frac{dU}{d\vec{r}}$$
$$= -k$$

- how do we want force ?
 - in x, y, z terms \vec{r}
- really $F_x = -\frac{\partial U}{\partial x}$ $F_y = -\frac{\partial U}{\partial y}$ $F_z = -\frac{\partial U}{\partial z}$


A simple force

• With an energy
$$U(r_{ij}) = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{q_i q_j}{r_{ij}}$$

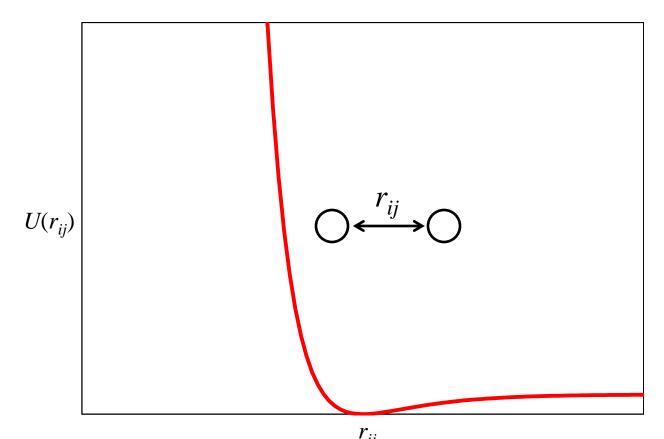
• force is
$$\vec{F} = -\frac{dU}{d\vec{r}} = \left(\frac{1}{4\pi\varepsilon_0}\right) \frac{q_i q_j}{r_{ij}^2} \hat{r}_{ij}$$

- Rule
 - if the derivative of energy is non-zero
 - there is a force
 - exam questions about bond angles, dihedrals, ...

protein force field (picture)

Protein force fields scary equation

$$\sum_{i=1}^{Nbond} \frac{k_{i}}{2} (r_{i} - r_{i,0})^{2}$$
 bonds
$$+ \sum_{i=1}^{Nangle} \frac{k_{i}}{2} (\theta_{i} - \theta_{i,0})^{2}$$
 angles
$$U(r) = + \sum_{i=1}^{Ndihedral} k_{i} (1 + \cos(n\varphi_{i} - v_{0}))$$
 dihedrals
$$+ \sum_{i=1}^{Natom} \sum_{j=i+1}^{Natom} 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ii}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ii}} \right)^{6} \right) + \frac{q_{i}q_{j}}{4\pi\varepsilon_{0}r_{ii}}$$
 non – bonded

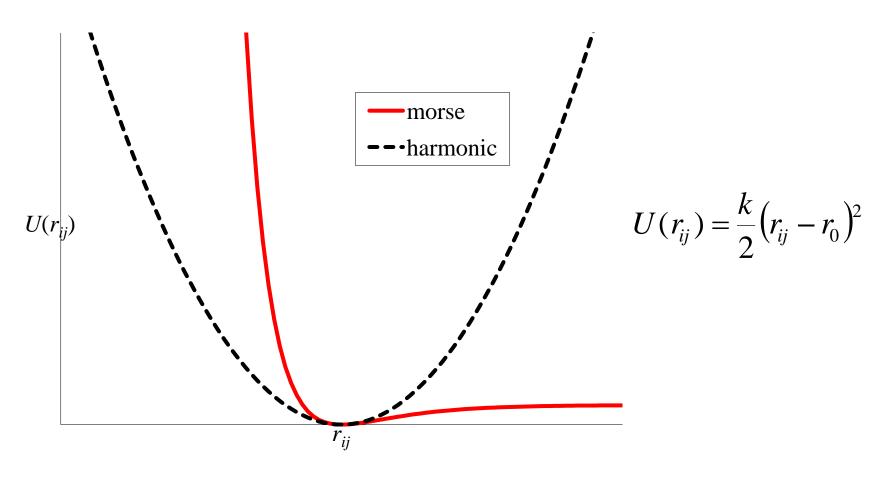

Is this the truth?

not a bad model

Bonds

What are bonds really?

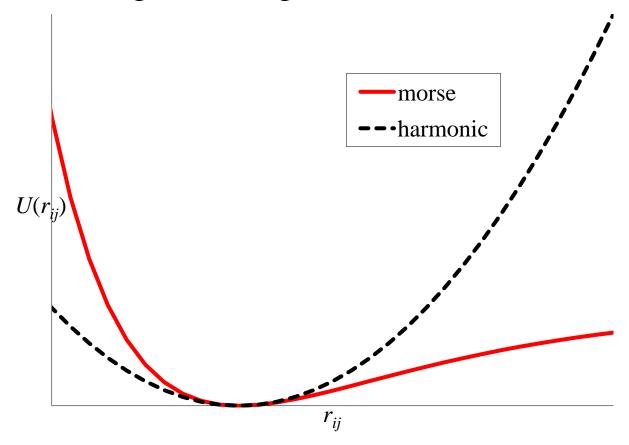
as we pull two particles apart, what happens?



Can we approximate this?

• this formula has exp() terms - cpu expensive

Bonds - approximate


• Is the black line a good approximation?

Bonds – good enough

Bonds don't stretch much

harmonic is often good enough

Why do we write $k/2(r_{ij}-r_0)^2$?

Bonds – the end

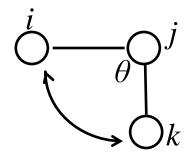
• We normally write $U(r_{ij}) = k/2 (r_{ij} - r_0)^2$

$$\vec{F}_{i} = -\frac{k_{ij}}{2} \frac{dU(|\vec{r}_{ij}| - r_{ij,0})^{2}}{d\vec{r}_{ij}}$$
$$= -k_{ij} (|\vec{r}_{ij}| - r_{ij,0}) \vec{r}_{ij}$$

so first form looks like Hookes law

Do bonds matter?

- fluctuations very small at room temp (< 0.1 Å)
- our structures are not so accurate / we simulate to look at coarse features
- often treated as rigid joints (maybe more in MD lectures)

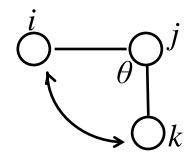

Angles

Angles are not as boring as bonds

$$U_{angle}(\vec{r}_i, \vec{r}_j, \vec{r}_k,) = \frac{k}{2} (\theta_{ijk} - \theta_0)^2$$

or

$$U_{angle}(\vec{r}_i, \vec{r}_j, \vec{r}_k,) = \frac{k}{2} (\cos \theta_{ijk} - \cos \theta_0)^2$$



but to get forces is messy (use chain rule)

Why is this difficult?

We use physical models like

$$U_{angle}(\vec{r}_i, \vec{r}_j, \vec{r}_k,) = \frac{k}{2} (\cos \theta_{ijk} - \cos \theta_0)^2$$

- force is obvious
 - looking at picture
 - in terms of $\cos \theta$
 - in terms of θ ?
 - we want x, y, z

$$F_{angle}(\vec{r}_i) = \frac{-\partial U(\vec{r}_i)}{\partial (\vec{r}_i)}$$

$$= \frac{-\partial U(\vec{r}_i)}{\partial \cos \theta} \frac{\partial \cos \theta}{\partial (\vec{r}_i)}$$

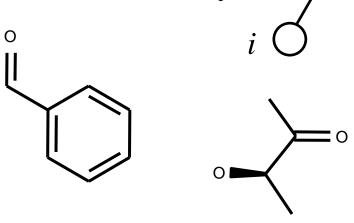
$$= \frac{-\partial U(\vec{r}_i)}{\partial \cos \theta} \frac{\partial \cos \theta}{\partial (\vec{r}_i)}$$

$$= \frac{-\partial U(\vec{r}_i)}{\partial \cos \theta} \frac{\partial \cos \theta}{\partial \theta} \frac{\partial \theta}{\partial (\vec{r}_i)}$$

Angle forces

$$F_{angle_i} = \frac{-\partial U_{angle}(\vec{r}_i)}{\partial \vec{r}_i}$$

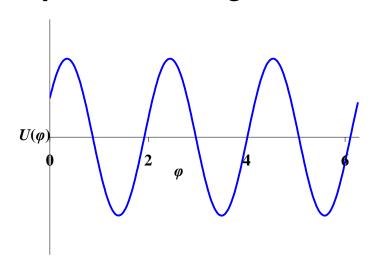
$$= \frac{-\partial U_{angle}(\vec{r}_i)}{\partial \cos \theta_{ijk}} \frac{\partial \cos \theta_{ijk}}{\partial \vec{r}_i}$$

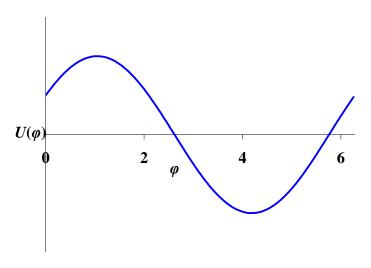

$$= -k(\cos \theta_{ijk} - \cos \theta_0) \left(\frac{\vec{r}_{kj}}{r_{kj}} - \frac{\vec{r}_{ij}}{r_{ij}} \cos \theta_{ijk}\right) \frac{1}{r_{ij}}$$

- the other atoms?
 - similar expression for F_k

$$\bullet \quad F_j = -(F_i + F_k)$$

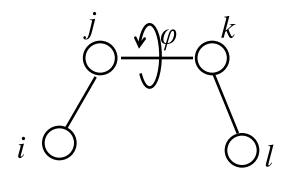
dihedral / torsion angles


- basically...
- but details will vary



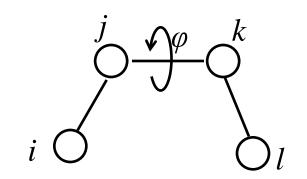
- how large are energy barriers?
- how many minima are there ?

Form of dihedral term


Maybe something has three minima or one minimum

What are the causes?

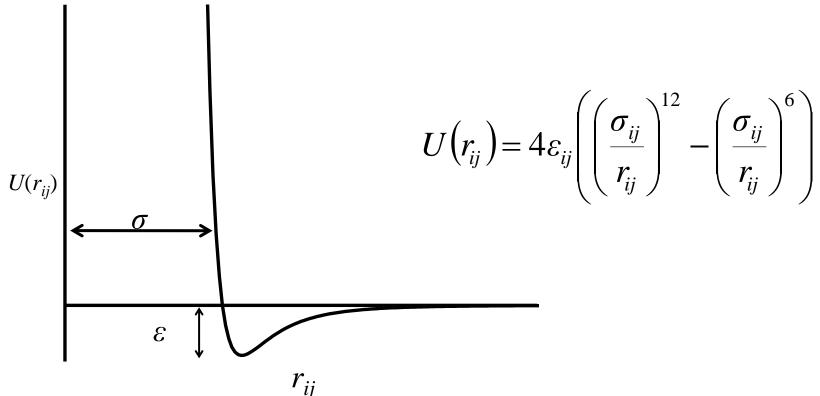
- do *i* and *l* interact ?
- electron clouds from *j* and *k*?
- model $k_i (1 + \cos(n\varphi_i v_0))$


model for dihedral angles

$$U(\vec{r}) = k_i \left(1 + \cos(n\varphi_i - v_0) \right)$$

- Properties ?
 - *n* controls multiplicity
 - n = 3 butane
 - n = 2 peptide bond

- atoms do rotate, but there are preferences (from spectroscopy)
- how good is the model?
 - some rotamers are preferred (need other terms)
- What do forces look like? scary (much trigonometry)
 - intuitively easy, maths messy- think of *j* and *k*



Non bonded forces

- van der Waals / Lennard-Jones / dispersion + attraction
- electrostatic
- why are they separated from others?
 - bonds, angles and dihedrals
 - you know the participants in advance
 - non-bonded
 - atoms can move to and from each other

van der Waals

- what do we know in advance?
 - "inert" gases do form liquids (atoms like each other)
 - atoms do not sit on top of each other

distance of minimum energy = $2^{\frac{1}{6}}\sigma$

van der Waals – how good is it?

- repulsive and attractive look similar
 - quite different

$$U(r_{ij}) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right)$$

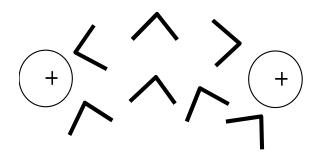
- attractive part ?
 - electrons wobble and talk to neighbours induce charges
 - r^{-6} pretty good
- repulsive part ?
 - what do atoms look like ?
 - really exponential, r^{-12} is very convenient

Lennard-Jones terms – how real

- how real is it?
 - good for liquid argon
 - diffusion, transport...
- Lennard-Jones fluids
- nice features
 - ε , σ = "well depth" and size
 - ε , σ specific for atom pairs
 - σ for H is tiny, for C is much bigger
- typical exam question
 - dimensions of energy are ML²T ⁻²
 - if the units of σ are Angstrom Å (dimension L)
 - what are the units (or dimensions) of ε ?

Electrostatics

- Coulombs law
 - Sounds easy $U(r_{ij}) = \frac{q_i q_j}{4\pi\varepsilon_0 r_{ij}}$


sometimes

$$U(r_{ij}) = \frac{q_i q_j}{D r_{ii}}$$

- where D is dielectric constant
- why is it difficult?
 - what is D?
 - with and without water?
 - intervening protein?

more on solvent models later

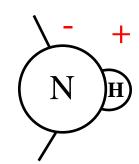
Model can be made better / worse

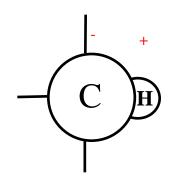
Is this model good or bad? fast or slow?

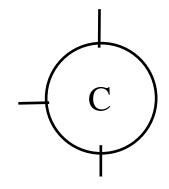
What will it be used for ?

- molecular dynamics simulations, energy minimising, rarely a simple energy evaluation
- very cpu intensive

Two conflicting goals

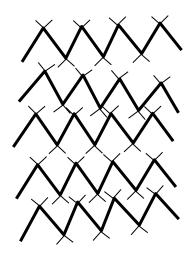

- make model cheaper, but maintain quality
- add details to make model better


Cost of model?


- bonds, angles, dihedrals O(n)
- non-bonded n particles interact with n particles $O(n^2)$
- probably $\approx 90\%$ of time spent on non-bonded interactions

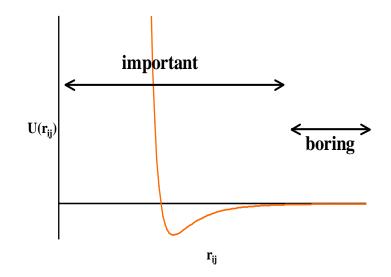
Cheaper models - United atoms / heavy atoms

- When does a proton matter?
 - charge interactions, H bonds
- When is a proton not interesting?
 - most aliphatic and aromatic
 - hardly a charge / tiny radius
- Do we even need the hydrogen?
 - Use a "united atom"
 - mass easy 12 + 1
 - charge? nothing
 - radius slightly larger
- Rule
 - Use explicit H in polar groups
 - absorb everywhere else
 - CH, CH₂, CH₃



United atoms how bad?

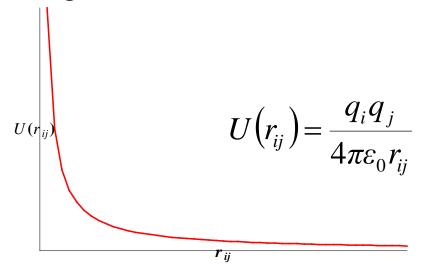
- Gain of united atoms ?
 - roughly halve number of atoms
 - Costs?
 - dynamics ? no problem
 - structure ? no real problem
- Problems?
 - some small effects can be seen in certain systems
 - lipids
 - maybe some effects in proteins


Cutoffs (cheaper models)

How important is an interaction?

- some are not interesting (bonds)
- some depend where you are

$$U(r_{ij}) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right)$$


- r^{-6} and r^{-12} become small quickly
- if $r_{ij} > 6 8 \text{ Å}$, $U_{LJ}(r_{ij}) = 0$
 - not a problem

more difficult.. for other terms

cutoffs - problems

- electrostatics
- r^{-1} shrinks slowly
- but eventually, we should be able to ignore
- bigger cutoff (10 15 Å)

- in practice
 - use one cutoff for all non-bonded calculations
- problems
 - subtle look at derivative

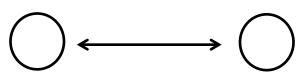
Possible improvements

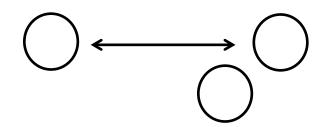
Better bonds?

- more sophisticated than harmonic $(r r_0)^2$
- not very interesting
- L-Jones better than r^{-12} ?
- not worth worrying about

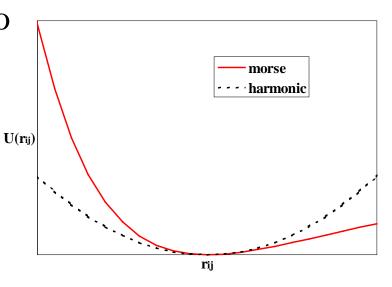
Electrostatics

- polarisation?
 - completely lacking from model so far (fixed partial charges)
 - we know it is important
 - popular, difficult

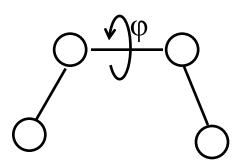

Water


• model so far is *in vacuo* ... more later

Problems and fixes in model


Model is fundamentally wrong

- think about forms of functions
- all two-body based, compare...


- can we represent interactions with two body form ?
 - can be good for a small range
 - remember earlier picture...
 - what works well at 300K may not work at 600K

Why problems may not be seen

Model is not perfect, why do simulations work?

- lots of parameters, not independent
- example
 - what controls density of a polar fluid
 - charges ?
 - Lennard-Jones terms?
 - both
- complicated example
 - rate of rotation..
 - torsional term ***
 - size of atoms and barriers (ε, σ) **
 - angles ? a bit
 - errors in one part of force field compensated elsewhere

Testing force fields

What should a force field do?

- if I simulate a protein
 - it should not blow up
 - necessary / not sufficient
- reproduce energy changes
- global minimum (free) energy should agree with experiment

Dream properties

Perfect model of physics would work in all cases Transferability

- atomic parameters same from protein to protein
- from protein to organic molecule
- across temperature ranges?

Disappointments / difficulties

Special systems / special problems

- highly charged systems
 - DNA
 - solvent and charges
- lipids
 - repetitive nature emphasises some problems

Meaning of disappointment

- simulate a protein and it falls apart
- it implodes
- density of a system is wrong
- energetic predictions are wrong
- dynamic predictions are wrong
- smaller structural predictions are wrong

Parameters

Force field / model has lots of parameters

- charge, mass, ε , σ ,
- bondlengths, angles, ... for each type of bond / angle /dihedral Sources
- literature
 - mass
- partial charges ?
 - high level calculations
- measurements on small molecules
 - bond lengths, geometry
- trial and error (example)
 - simulate a liquid and
 - reduce σ to increase density
 - decrease ε to make it boil more easily

Parameters are a compromise

Model is not perfect

- internal compensation
- compromise example
 - partial charges are not really fixed
 - depend on environment + geometry
- make a decision and adjust others to work in important area

Atomistic force field summary

- very good model for much
 - protein dynamics
 - interactions
 - structure
- main model
 - ignore water
 - 3 kinds of bonded interactions
 - 2 non-bonded
- conservative force field
 - $U(r_{ii})$ energy depends on coordinates only
 - no time component
- energy continuous
 - useful
 - derivative always defined
 - very useful

Where next?

- Better models (not much)
- Fixing worst aspects
- Simpler models
- Simulation
- first some rules from statistical mechanics