Protein folding

Andrew Torda July 2011 Struktur & Simulation

• How does a protein do this ?

- Ideas
 - kinetic vs thermodynamic structures
 - experimental methods for following protein folding
 - pathways for folding
 - entropic barriers

Background / stories

- from biochemistry Übungen (protein folding easy)
 - take lysozyme / ribonuclease...
 - put in 8M urea (unfolds)
 - remove urea (refolds)
- conclusion ?
 - the protein sequence is all you need to fold a protein
 - is this true ? Not always

Alternative (logical reasoning)

• protein folding should be impossible...

Protein folding should be difficult

From simple theory – Levinthal's paradox

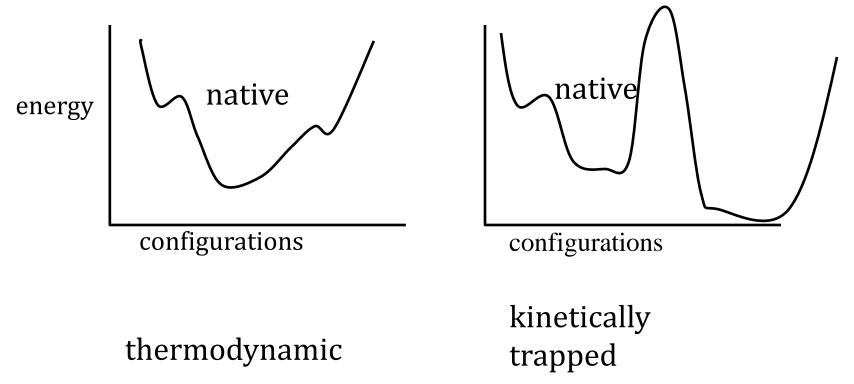
- each amino acid has 2 or 3 or *n* conformations
- for a protein of m residues, it should visit n^m
- what if it spends 10⁻¹⁵s at each conformation ?
- time to find one conformation for n=3 and 100 residues
- $3^{100} \times 10^{-15} \text{ s} \approx 1.6 \times 10^{25} \text{ years}$
- is this serious ? useful ?
 - proteins cannot be exploring space randomly
 - historic idea of "folding pathway"

Who cares about protein folding?

Belief

- if we could understand folding we could
 - predict structure
 - design proteins that fold better (more stable)
 - identify essential residues for folding (not suitable for mutagenesis)

Issues / Questions


- Kinetic versus thermodynamic
- What order do events happen in ? (collapse vs secondary struct)
- Is unfolding the same as folding ?
- Is folding in a test tube the same as nature ?

Are proteins in energy minima?

- Anfinsen story..
 - proteins can be unfolded and refolded alone
 - all the information is in the sequence
 - native conformations are the (free) energy minimum
 - thermodynamic belief
- more modern
 - many many proteins cannot be refolded in the lab
 - consequence .. maybe they need something else
 - maybe they are not always in free energy minimum
- kinetically trapped proteins..

Kinetic versus thermodynamic

- If proteins fold spontaneously and remain folded, they are thermodynamically determined
- If you leave a protein long enough and it unfolds, it was not in an energy minimum

Consequences

Thermodynamic

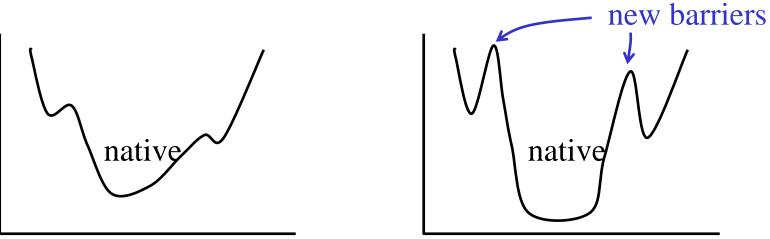
- conforms to classic view
- protein structure prediction
 - just a matter of modelling the real world

Kinetically trapped

• we cannot predict structure from sequence just by energies !

Consequences

Can we see which is the case ?


- leave a protein for 10 minutes and see if it finds another state
- for 10 years ? No.
- depends on barriers

Empirically

- some evidence of kinetic trapping
- some proteins do have other states
 - β-fibrils, Alzheimers, mad cow disease

Evolution / design consequences

- imagine I can predict structure and stability
- I design a better / more stable protein

configurations

configurations

- my new protein may be more stable
- it may never be found
- evolutionary implications
 - protein sequences may evolve for folding (+ structure and function)

Change of direction

- enough background on folding
- brief overview of experiments
- simulation

Experiments

- What timescales do we think of ?
 - maybe 10⁻⁶s for folding
 - maybe orders of magnitude slower (sometimes faster)
- Experimental approaches
 - force protein to unfold
 - chemistry (guanidinium HCL, 8M urea)
 - temperature (heat, cold)
 - change conditions and watch
 - try to measure very fast
 - try to change timescale
 - try to measure unfolding

NH₂+ Cl[−]

H₂N-C-NH₂

Experiments - problems

- Very difficult to measure on the μs / ms time scale
 - temperature jump
 - stop flow
 - fluorescence
 - NMR
 - circular dichroism (CD)

Are experiments relevant?

- Technical difficulties (obvious)
- Tradeoff
 - fast methods less information
 - more information too slow
- How real is it?
- Imaginary technique :
 - I can take any protein in denaturant
 - suddenly bring back native conditions
 - follow every detail
 - is this what happens in nature ?...

How real is experiment?

Our bodies – about 150 mM salt, regulated pH, temperature, ...

Denature a protein with high salt

- is the partially folded state natural?
 - it comes from disrupting a very special set of ionic interactions

How real is experiment?

Heat the protein

guaranteed to visit high energy states which are not natural

Hope ..

- the strongest interactions are formed first last to be broken
- Do proteins fold like this in nature ?
- proteins made from N to C terminus
- N terminus gets a chance to find structure, before rest of protein is there
- would permit very specific paths / kinetic trapping Next ... simulation and theory...

Monster Simulations

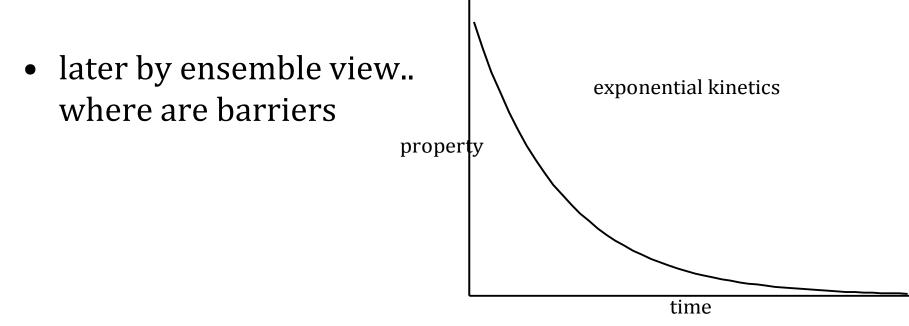
- Months of cpu time
 - very hard to fold
 - 1 copy
 - 1 protein
- 2011 record holder Shaw Research
 - some ms simulations, small proteins
- more feasible
 - simulate unfolding

Simulating unfolding

- Atomistic simulation of real protein too slow
 - take native structure at 300 K
 - gradually heat up
 - watch it fall apart
 - what breaks first?
 - secondary structure ?
 - overall fold ?
 - everything ?
- Reasons to believe
 - the last interactions to form (folding) may be first to break (unfolding)

Problems simulating unfolding

Problems


- the system is visiting high energy states which may not really exist
- force fields are parameterised for 300 K
- property of unfolded state(s)
 - statistics may be dominated by huge number of partially folded states (more later)
 - cannot visit these states in realistic time

Forgetting atomistic detail

- What are questions we can ask?
- What can we guess without any calculations ?
- Questions
 - is there such a thing as a folding pathway?
 - how should we look at folding ?
 - secondary structure forms first and is rearranged
 - hydrophobic residues come together and then secondary structure forms ?
 - a few important contacts are formed, then structure forms

General kinetics

- What have we seen so far ?
 - most properties have something like exponential decay
 - property = $a e^{-\alpha t}$
 - rate of change proportional to quantity present
- whatever model should explain at least this

What do we know

Possibilities

- proteins form secondary structure first
 - helices and sheets then arrange themselves

OR

- hydrophobic collapse
 - hydrophobic residues find each other
 - backbone rearranges and secondary structure is fixed

OR

- some key residues interact
- then comes secondary structure and hydrophobic core

OR

different proteins behave differently / there are no rules

Side chain vs backbone driven

Textbook

- local secondary structure forms, then reorganises
- secondary structure depends largely on backbone
- Alternative
 - sidechains are very important

Unfolded chain Transient α helices Stabilized a helices

 $(\alpha \alpha \text{ folding unit})$

Stryer, L. Biochemistry, 1981, WH Freeman, "Biochemistry", page 36

Sidechains might be important

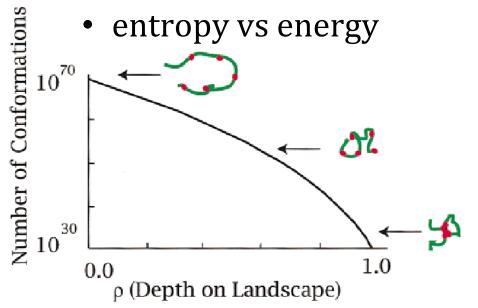
- backbone view does not predict collapse of protein
- α -helix and β -strand propensity is weak
 - isolated peptides are not stable
 - β -strands often depend on long-range H bonds
- helix / strand formation depends on environment / solvent and is not known in open structure
- fold is largely predictable / characterised by pattern of HP (sidechains)
- proteins are most sensitive to mutations in core (they are important for stability)

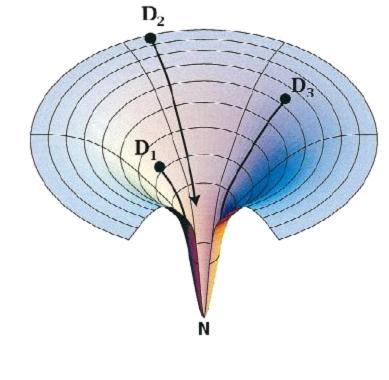
Types of pathway

From classical chemistry we would like a path unfolded $\rightarrow A \rightarrow B \rightarrow C \rightarrow$ folded (native) Slightly more complicated

- could still give us similar kinetics
- would expect to be able to see QQ

Basic idea $unfolded \rightarrow A \rightarrow B \rightarrow C \rightarrow folded$ (native)

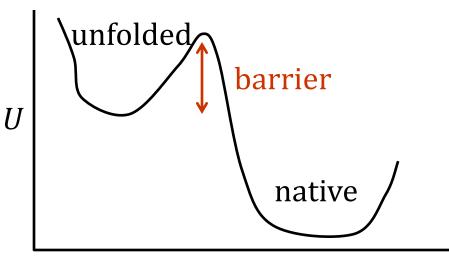

- molecules may get sidetracked, but
 - every molecule sees A, B, C...
- where does it come from ?
 - Levinthal's answer to paradox
 - there must be a preferred pathway
- old view / microstate pathway approach


Consequence of simple pathway

- does not disagree with two state kinetics
 - A or B or C might be part of transition barrier
- pathway with detours explains multi-state kinetics
- does it sound intuitively reasonable ?
 - what if a mutation perturbs A or B or C
 - whole pathway might break
 - maybe OK (this is why some mutants do not fold)
- do you need conventional pathway to explain barriers?

Ensemble view

- conformation space is huge
- will a protein be able to find a neat path through it?
- should we even look for paths ?
- consider a multitude of paths...
- is this merely a cute picture ?
- first implication...


from Dill, K.A., Protein Sci., 8, 1166-1180, 1999, Polymer principles and protein folding 12/07/2011 [34]

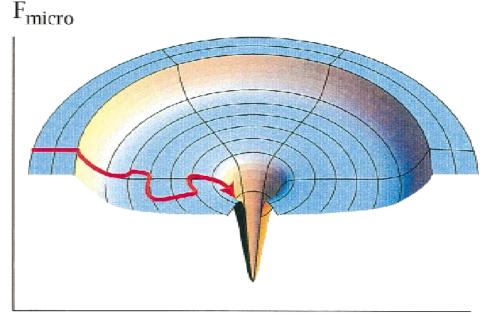
Consequence of ensemble view

- As a protein folds
 - potential energy goes down (happy)
 - number of possible states goes down
 - entropy goes down (unhappy)
- interpretation in chemical terms
 - do we have a off-pathway intermediate? (Q)
- do we have a reaction coordinate ?
 - not a classic one
 - can we invent one ? yes
 - if two atoms are in contact in the final structure
 - native contact
 - *Q* = number of contacts which are correct

Reaction path

- is this like a chemical reaction ?
 - no
 - many molecules have same *Q*, but different conformations
- we want at least two state kinetics
 - where does barrier come from ?

0 reaction coordinate (Q) 1


Entropic barriers

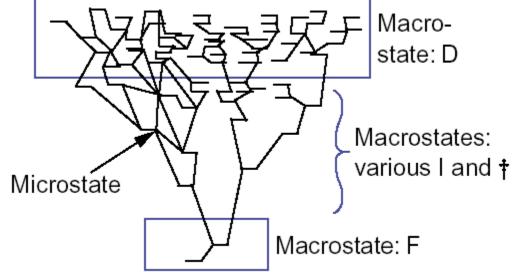
Nature cares about free energies

• $\Delta G = U - T \Delta S$

If a molecule walks around

- it takes a long time
- looks the same as an energy barrier

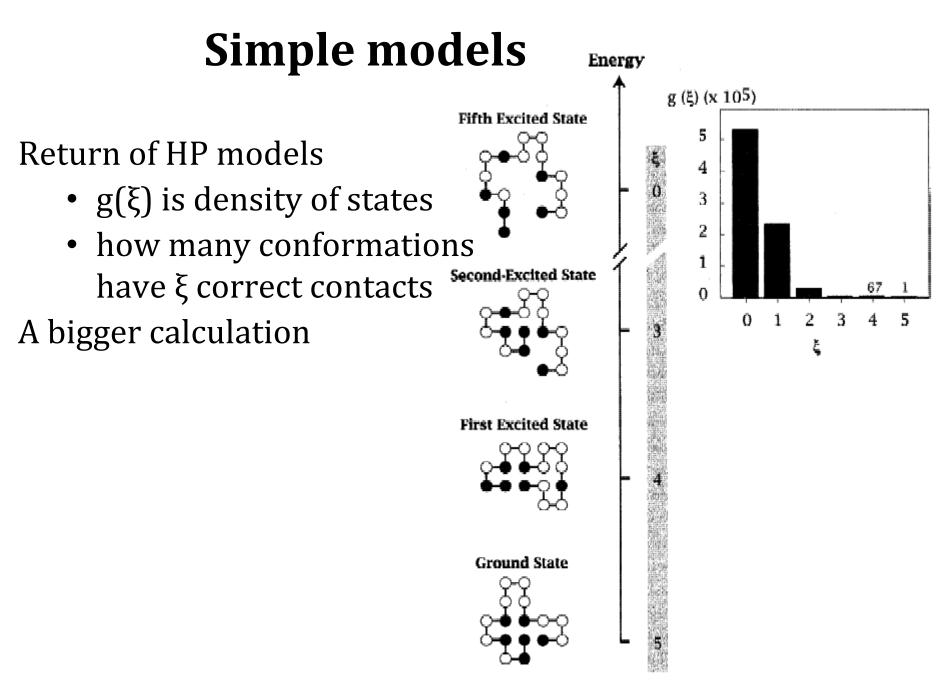
- Are these pictures useful ?
- Do they agree with calculation ?


Degree of Freedom (Φ_i)

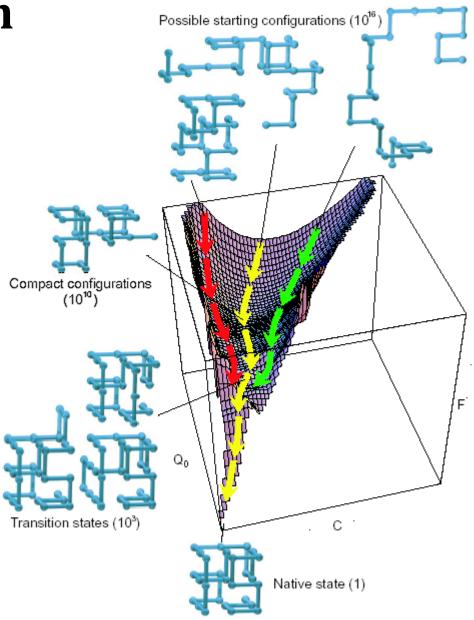
Interpretation of landscape

Does this disagree with conventional pathway?

 $A \rightarrow B \rightarrow C$?


- mostly at early stages
- there is a multiplicity of "A"
- when near native, there are relatively few conformations, so there may be something more like a pathway

Agreement with other ideas


Agreement with experiment?

- experiment says most about average properties
 - these are the same in landscape picture
 - should we expect to find well defined, early intermediates ?
- Agreement with MD simulation ?
- peptide results argue that they correspond to near native view

A larger calculation

- 27 residue
- simple lattice model
- estimations by sampling
 - not exhaustive
 - Q₀ correct contacts
 - C total contacts
 - F free energy

Summary

- Experiment vs. theory
 - experiment usually gives us averages
 - most calculations look at details
- Very different views on folding may be hard to distinguish are predictions different ?
- Folding may be guided by sidechains (not hierarchical)
- Early folding may be best modelled by very crude models (so space can be sampled)
- Any useful model should predict exponential kinetics (or more complicated)
- Even an ensemble view should explain results like critical residues