Monte Carlo and MD simulations

Andrew Torda, April 2011 strukt und sim

- What we observe in any system ?
 - averages of observables (pressure, energy, density)
- Given enough time system will visit all states

time

random hopping

• my observable *A*

$$A_{obs} = \frac{1}{(b-a)} \int_{a}^{b} A_{t} dt$$

$$A_{obs} = \frac{1}{N_{obs}} \sum_{i=1}^{N_{obs}} A_i$$

Time and space averages

• If we believe

$$A_{obs} = \frac{1}{N_{obs}} \sum_{i=1}^{N_{obs}} A_i$$

$$A_{obs} = \sum_{j}^{shares} p_{j} A_{j}$$

states

 $\equiv \langle A \rangle$

- $\langle A \rangle$ is ensemble average and usually \overline{A} is time average
- if sample with correct probability, we can find A_{obs}
- order of visiting states does not matter

Monte Carlo

• How to calculate π with random numbers

$$\frac{\text{points}_{red}}{\text{points}_{square}} = \frac{\frac{1}{4}\pi r^2}{\text{area in square}}$$

$$\pi = \frac{4 \text{ points}_{red}}{\text{points}_{square}}$$

while (not happy) pick random *x*, *y*

$$n_{square} + +$$

if ((x²+y²) < 1) $n_{red} + +$
print 4 n_{red} / n_{square}

Generating distributions / Monte Carlo

• generating points in a circle ?

$$p_{in_circle} = \begin{cases} 1 & x^2 + y^2 \le 1 \\ 0 & x^2 + y^2 > 1 \end{cases}$$

- we could work out the area of a circle (integrate) by picking random numbers
- what does Monte Carlo simulation mean ?
 - generating points according to some distribution to find an average or integral
- what is our distribution in physical systems ?
 - Boltzmann distribution

Monte Carlo and Boltzmann distributions

Boltzmann probability distribution

- if we could generate this distribution, we could reproduce most properties of a system
- leads to a scheme (not possible)

an impossible scheme

- result ? a set of \mathbf{r}_i with Boltzmann distribution
- problem ? we do not know $\sum e^{-E_j/kT}$

a better scheme

- we cannot generate points from $p_i = \frac{e^{-E_i/kT}}{\sum_{i} e^{-E_i/kT}}$
- what if we have two configurations ?
- if we have one configuration to start
 - we can work out the probability of a second
- convenient convention
 - going from old \rightarrow new $\Delta E < 0$,
 - $E_{new} E_{old} < 0$, energy is better / more negative

$$\frac{p_i}{p_j} = \frac{e^{\frac{-E_i}{kT}}}{Z} \quad \frac{Z}{\frac{-E_j}{kT}}$$

$$= e^{E_j - E_i / kT}$$

$$=e^{-\Delta E/kT}$$

Metropolis Monte Carlo

• generating a distribution

$$\frac{p_{new}}{p_{old}} = e^{-\Delta E/kT}$$

- if $\Delta E < 0$, new is likely (more than 1)
- if $\Delta E > 0$, old is p_{new} is possible
- generate starting configuration \mathbf{r}_o while (not happy)

generate \mathbf{r}_{new} calculate E_{new} and $\triangle E$ if $\triangle E < 0$

set \mathbf{r}_o to \mathbf{r}_{new}

else

x = rand [0:1]

$$if\left(x \le e^{-\Delta E_{kT}}\right)$$

set \mathbf{r}_{o} to \mathbf{r}_{new}

• what if ΔE slightly > 0 ?

- 0.000000001
- what if $\Delta E = 10^6$?
- small uphill moves are OK
- bigger moves are less likely

Properties of Monte Carlo

- the set of \mathbf{r}_o is a valid distribution (ensemble)
 - for some property A

$$A_{obs} = \langle A \rangle = \frac{1}{N_{visited}} \sum_{i}^{N_{visited}} A_{i}$$

- A could be density, structural property, *E*, ...
- only works for one temperature *T*
- does this fit with picture ?
- could I calculate entropy / free energy ?
 - only for very simple systems

Equilibrium

- MC only for system at equilibrium / generates system at equilibrium
- Toy system with 3 states
 - for some *T*

•
$$p_1 = \frac{5}{8}$$
 $p_2 = \frac{1}{4}$ $p_3 = \frac{1}{8}$

- if I have 80 copies of the system, most are in state₁ $|_{E_1}$
- I start a simulation with 70 copies in state 2. 5 in other states
- all moves $2 \rightarrow 1$ are accepted
- moves $1 \rightarrow 2$ are less frequent +
 - before equilibrium distribution state₁ is less populated
- moving to equilibrium depends on
 - population
 - probability

 $E \begin{bmatrix} E_3 \\ E_2 \end{bmatrix}$

Detailed balance

- For any two states (state_{*i*} and state_{*j*})
- flow $i \to j$ must equal $j \to i$
 - otherwise ?
- flow $i \rightarrow j$ depends
 - population N_i
 - probability $\pi(i \rightarrow j)$
- Detailed balance

$$N_i \pi(i \to j) = N_j \pi(j \to i)$$

• detailed balance must apply for any pair *i*, *j*

all textbooks use π for probability here

Ergodic

- Assumptions
 - I can do integrals because
 - I will visit every state
 - I can calculate p_i for all states
 - I will visit every state
- alternatively
- for any *i*, *j*
 - $\pi(i \rightarrow j) > 0$
 - may require a finite number of steps: $i \rightarrow k \rightarrow m \rightarrow j$ OK
- must be satisfied

Moves

version 1

- decide on r_{max}
- pick a particle at random
- pick random Δx , Δy , Δz
 - $0 < \Delta a < r_{max}$
- apply move
- accept / reject move

version 2

- decide on smaller r_{max}
- foreach particle
 - pick random Δx , Δy , Δz
 - $0 < \Delta a < r_{max}$
- apply move
- accept / reject

Moves

- both kinds of move OK
- note
 - "accept / reject"
- more generally,
 - how big is r_{max} ?
 - big
 - system moves faster
 - more moves rejected
- what if my particles are not spheres ?
 - rotations also necessary
- time has no meaning

Bonded systems

- protein (lipid, polymer, ..)
- random Δx ?
 - nearly all will stretch a bond
 - high energy : rejected move
- only feasible method
 - random rotations $\Delta \theta$
- in general
 - most kinds of simple moves OK
 - must maintain detailed balance, ergodicity
 - question of efficiency
 - high rejection rate means lots of wasted calculations

NVT

- Remember back to Gibbs / Helmholtz
- I have defined temperature
 - and $N_{particles}$ and V
- called NVT simulation
- could I have varied something else ?
 - what if I tried to put particles in / take out ?
 - sometimes energy ↑sometimes↓
 - the system will fluctuate around <*N*>
 - this would not be NVT

Periodic Boundary Conditions

• technical point relevant to gases, proteins in water...

• behaves like an infinite system

Infinite interactions ?

- neighbours of blue particle
 - only use the nearer
 - not really an infinite system
- volume defined by box

Problems with Monte Carlo

- basic scheme while (not happy) propose move accept / reject move
- if we use small steps
 - system moves slowly: long time to visit all states
- big steps ?
 - calculate energy
 - reject move
 - no progress, wastes time

Dense Systems and Monte Carlo

- If we do random moves ?
 - most moves rejected
- dense systems ?
 - liquids
 - proteins, polymers, ...
- Solutions
 - cleverer MC moves (later)
 - MD

Why do molecular dynamics simulations ?

Real world

- box of gas, molecule in space, protein molecule in water
- atoms hit each other,
 - share energy, box expands/contracts, ..
 - soon reaches equilibrium
 - visits low energies (often), high energies (less often)
 - visits entropically favoured regions
- we stick in a thermometer
- measure density, ...
- what have the atoms done ?
 - feel forces and move
 - an MD simulation just copies this

What do we expect ? Molecular Dynamics

one particle in a well

• Unlike MC, particles have kinetic energy E_{kin}

Kinetic and potential energy

- Our system is isolated (no work done)
- E_{tot} never changes
 - conserves energy (no work done on system)
- $E_{tot} = E_{pot} + E_{kin}$

• For one particle $E_{tot} = E_{pot} + E_{kin} = \text{constant}$

Lots of particles

- particles hitting each other
 - exchanging energy
- total system
 - conserves energy
- one particle ?
 - maybe at bottom but moving slow $(E_{kin} + E_{pot} \text{ small})$
 - per particle energy no longer conserved (may gain or lose)
- many particles
 - distribution of velocities
 - distribution of potential energies

Boltzmann distribution in real world

One version of real world (N, V, T)

- constant number of particles, volume, temperature
- today $E = E_{kin} + E_{pot}$
- *Z* is partition function

• earlier
$$Z = \sum_{i} e^{-E_i/kT}$$

- but now we have kinetic energy E_{kin} (**p**)
- where $\mathbf{p} = m\dot{\mathbf{x}}$
 - potential energy $E_{pot}(\mathbf{r})$
- if we write in continuous form ...

$$p_i = \frac{e^{\frac{-E_i}{kT}}}{Z}$$

Partition function for MD

- Usually write $H(\mathbf{p},\mathbf{r}) = E_{kin}(\mathbf{p}) + E_{pot}(\mathbf{r})$
 - "Hamiltonian"
- All the states are defined by all possible momenta and coordinates
 - sum over these: $Z(N,V,T) \propto \int d\mathbf{p} \int d\mathbf{r} \, e^{-H(\mathbf{p},\mathbf{r})/kT}$

MD Method

- For any particle we can calculate forces
- Newtons law
 - F = ma often better written $\vec{x} = \vec{F}m^{-1}$
- if we know acceleration
 - we can get velocity
- from velocity
 - can get coordinates

Starting system

Initial coordinates

- protein model
- protein from protein data bank (PDB)
- protein + proposed ligand
- box of liquid

Do initial coordinates matter ?

- in principle: no infinitely long simulation visits all configurations, reaches equilibrium
- in practice: yes
 - bad examples
 - no simulation is long enough to predict protein conformation
 - take water configuration and run at ice temperature

Initial velocities

• first consider temperature – reflects kinetic energy

$$\left\langle \frac{1}{2}mv_{\alpha}^{2}\right\rangle = \frac{1}{2}kT$$

- where v_{α}^2 could be v_x , v_y , v_z
- leads to definition

$$T(t) = \sum_{i=1}^{N} \frac{m_i v_i^2(t)}{kN_f}$$

- where N_f is number degrees of freedom $\approx 3N$
- we could use this to get initial velocities $\langle v_{\alpha}^2 \rangle = kT/m$

Initial velocities

- would one $\langle v^2 \rangle$ be OK ?
 - not very good
 - E_{kin} correlated with E_{pot}
- either
 - use more sophisticated distribution
 - do not worry
 - ultimately system will go to equilibrium
 - velocities will reach sensible values

Getting new velocities / coordinates

- constant acceleration
 - $x_t = x_0 + vt + \frac{1}{2} at^2$

• or
$$x_t = x_0 + \dot{x}t + \frac{1}{2}\ddot{x}t^2$$

• ok for ball falling in gravity

big Δt / step big error

Fundamental problem with integration

- We want to use big Δt (speed)
- We must use small Δt (accuracy)
- All Δt will give us some error
 - numerical integration is never perfect
- How small is Δt ?
 - depends on fastest frequency / steepest walls in energy
 - usually bonds
 - for proteins at room temperature
 - $\Delta t \approx 1$ fs (femtosecond 10^{-15} s)
 - high temperature Δt should be smaller
- practical integrators
 - remove velocity slightly more sophisticated

Noise and heating

- general rule
 - noise heats the system
 - formally difficult to prove
 - $E_{kin} = \frac{1}{2} mv^2$

Noise-free Simulation

- Energy conservation : Absolute rule $E_{pot} = f(\mathbf{r})$
 - no time component
 - invariant under translation, rotation
- When violated ?
 - (**r**) does not change, but E_{pot} changes: E_{tot} changes

Noise Sources

Integrator

- coordinates do not match velocity E_{kin} wrong: $(E_{kin} + E_{pot}) \neq \text{constant}$
- energy not conserved
- Numerical noise
- $E_{pot} = f(\mathbf{r})$
- initial coordinates (**r**) quoted to 3 decimal places
- really less accurate

Cutoffs

- within cutoff rotation restricted
- outside cutoff rotation suddenly free

Result

• heating

Equilibrium

- Remember MC story
 - system not at equilibrium ? eventually equilibrates
- MD
 - start in high energy E_{pot}
 - E_{pot} converted to E_{kin}

- Some high energy conformation
 - relaxes
 - E_{pot} converted to E_{kin}

- MD system will not
 - really find low energy
 - known temperature

MD in a closed system

- An isolated molecule should not lose energy
- A repeated box will not lose energy
- Formally system is
 - NVE (constant N_{particles}, volume, energy)
- Problems
 - we want to set the temperature of the system
 - we may have noise / heat creating energy
- Cure
 - thermostat

Bath

- imagine infinite bath at desired temperature
- heat will flow in or out
- at equilibrium no flow of heat
 - maybe removal of noise/heat
- how to implement ? Many ways Occasionally:
 - 1. introduce a fake particle desired temperature / collide
 - 2. pick a particle at random / give average v for temperature
 - 3. Easy method –weak coupling...

Weak Coupling

- Remember temperature* $E_{kin} = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 = \frac{3}{2} NkT$
- Heat leaves system depending on how wrong temperature is

$$\frac{dT(t)}{dt} = \frac{T_0 - T(t)}{\tau_T}$$

- T_0 is reference temperature
- τ_T is a coupling / relaxation constant
 - τ_T tiny, heat moves fast. τ_T big, ...
- to implement this idea ? Multiply velocities

^{*}Slight simplification of formula

Classic reference: Berendsen, HJC, Postma, JPM, van Gunsteren, WF, DiNola, A, Haak, JR, "Molecular dynamics with coupling to an external bath", J. Chem Phys, 81, 3684, (1984) 20/04/2011 [39]

Implementation of weak coupling

- scale velocities, $v_{new} = \lambda v_{old}$
- intuitively

•
$$\Delta t$$
 (time step) big ? temperature will change more

- what if $T_0 = T$?
- square root ?
 - wrong *T* reflects a difference in v^2
- can we break this ?
 - scaling is applied to whole system
 - what if part is hot ?

 $\lambda = \left(1 + \frac{\Delta t}{\tau_{\tau}} \left(\frac{T_0}{T} - 1\right)\right)^{\frac{1}{2}}$

Importance of heat baths

- Does not conserve energy
- In principle
 - bring a system to equilibrium for temperature
- In practice
 - avoid damage due to numerical errors / approximations
- For a system at equilibrium
 - heat bath should do nothing
- Does allow for artificial tricks
 - gently heat a system and watch behaviour
 - gently cool a system and "anneal" it (more later)
- Extension to other properties
 - analogous reasoning for pressure bath

Summary of MD

- Philosophy
 - natural way to copy/model/simulate nature
- Lets one model processes in real time

MC	MD
• any cost/energy OK	requires continuous $E_{pot}(\mathbf{r})$
• time usually invalid	gives time scales
• most moves OK	physical trajectories
• Temperature enforced by	has explicit E_{kin}
acceptance	
both include entropic terms	

both include entropic terms