Coarse grain models (continuous)

Andrew Torda, june 2011,, Strukt & Sim

So far ?

- very detailed models
 - atomistic, solvation

What are some reasonable aims ?

- given a set of coordinates
 - are these roughly correct for a protein sequence ?
 - is this more likely to be α -helical or β -sheet ?
- less reasonable
- given initial coordinates, can I simulate a protein folding ? Should we approach this with a detailed force field ?
- maybe not

Aims

- Why atomistic force fields / score functions are not always best
- Different levels of force fields
- Examples of coarse-grain / low-resolution force fields
- Ways to parameterise force fields
- later...
- extending this idea to lattice models

History

History

- Levitt, M and Warshel, A, Nature, 253, 694-698, Computer simulation of protein folding (1975)
- Kuntz, ID, Crippen, GM, Kollman, PA and Kimelman, D, J. Mol. Biol, 106, 983-994, Calculation of protein tertiary structure (1976)
- Levitt, M, J. Mol. Biol, 104, 59-107, A simplified representation of protein conformations for rapid simulation of protein folding (1976)
- through to today

Problems with detailed force fields

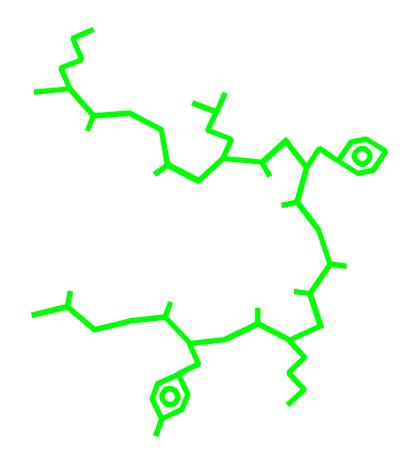
Time

- typical atomistic protein simulations 10⁻⁹ to 10⁻⁶ s
- too short for folding
- Radius of convergence
- I have coordinates where atoms are perturbed by 1 Å $\,$
 - easy to fix atoms move quickly
- I have completely misfolded, but well packed coordinates
 - may be difficult to fix
 - what dominates ?
 - atomic packing
 - charges
 - solvation ?

Do I care about details ?

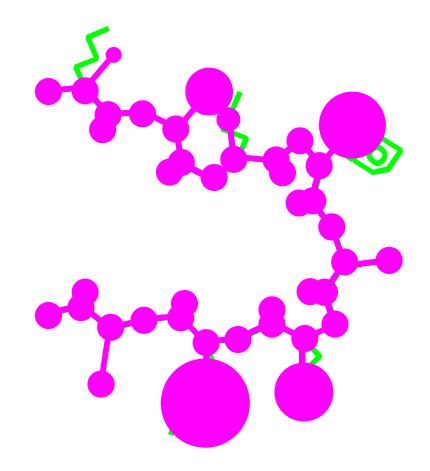
Coarse grain / low resolution

Forget atomic details

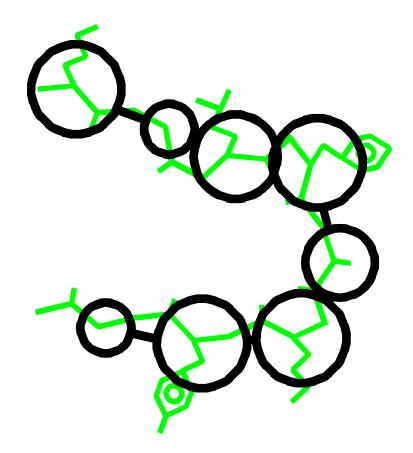

- build something like energy which encapsulates our ideas
- example define a function which is happiest with
 - hydrophobic residues together
 - charged residues on outside
- would this be enough ?
 - maybe / not for everything

What will I need?

- some residues like to be near each other (hydrophobic)
- residues are always some constant distance from each other
- only certain backbone angles are allowed


General implementation (easiest)

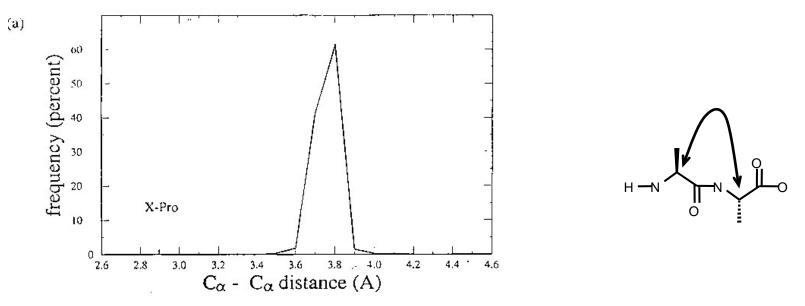
- how do we represent a protein ?
 - decide on number of sites per residue


General implementation (easiest)

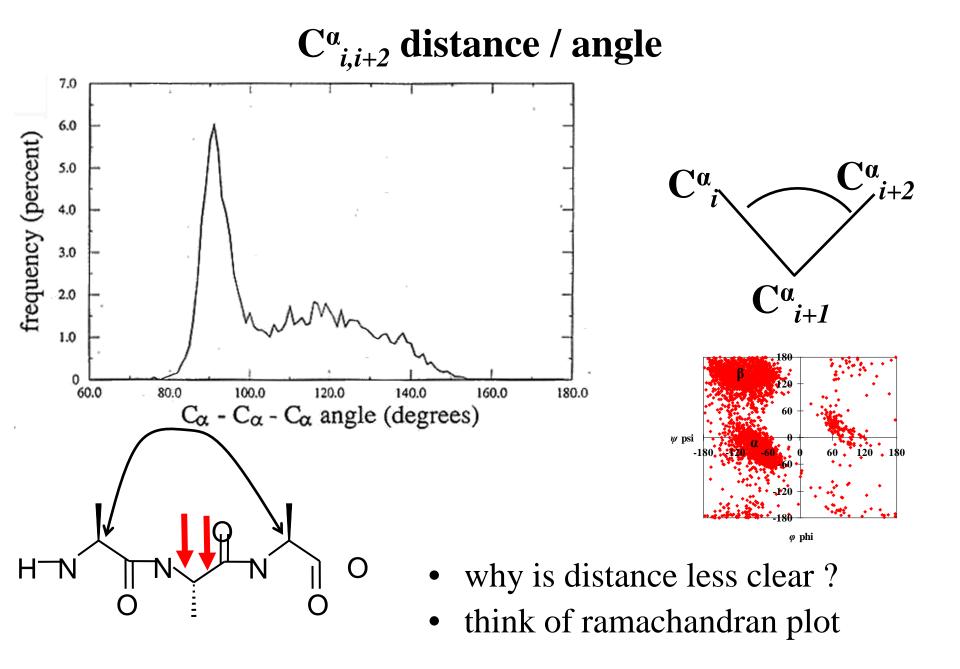
- how do we represent a protein ?
 - decide on number of sites per residue

General implementation (easiest)

- how do we represent a protein ?
 - decide on number of sites per residue



Coarse-graining (steps)


- Decide on representation
- Invent quasi-energy functions
- Our plan
 - step through some examples from literature
- Common features
- some way to maintain basic geometry
- size
- hydrophobicity ? which residues interact with each other/solvent

Basic geometry

• Survey protein data bank files and look at C^{α} to C^{α} distances

- Conclusion is easy
 - any model should fix $C^{\alpha}_{i,i+1}$ distances at 3.8 Å
- what other properties do we know ?

First simple model

n residues, *n* interaction sites *i*,*i*+1 restrained (C^{β} formulation) Overlap penalty / radii

- lys 4.3 Å, gly 2.0 Å, ... trp 5.0 Å
- $U(r_{ij}) = (\text{radius}_i + \text{radius}_j)^2 r_{ij}^2$

force hydrophilic residues to surface, for these residues

• $U^*(r_{ij}) = (100 - d_i^2)$ where d_i is distance to centre, 100 is arbitrary

disulfide bonds

• very strong

residue specific interactions

- $U^{long}(r_i) = c_{ij} (r_{ij}^2 R^2)$ where c_{ij} is residue specific
- R is 10 Å for attraction, 15 Å for repulsion

residue specific part of interaction

• c_{ij} table		lys	glu	•••	gly	pro	val
 features hydrophobic + - 	lys	25	-10		0	0	10
	glu	-10	25		0	0	10
 nothing much 	•••						
C	gly	0	0		0	0	0
	pro	0	0		0	0	0
	val	10	10		0	0	-8

summary

- *i*,*i*+1 residue-residue
- overlap
- long range
- solvation

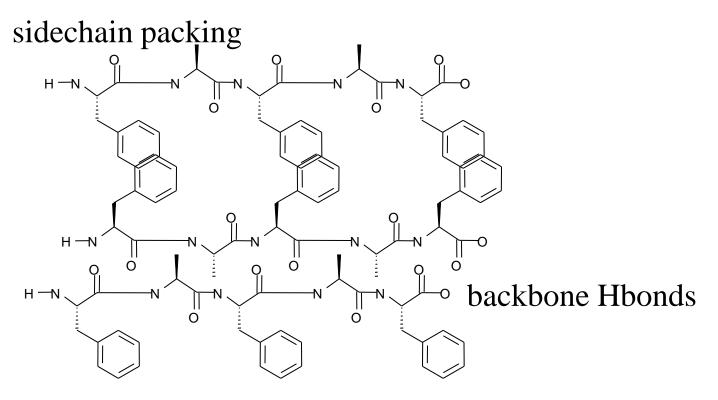
where is physics ?

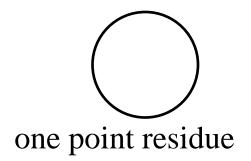
- solvation ?
 - term pushes some residues away from centre
- electrostatics
- hydrophobic attraction
 - by pair specific c_{ij} terms

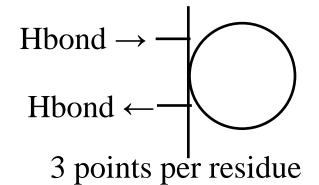
other properties

- smooth / continuous function
- derivative with respect to coordinates
 - (good for minimisation)

does it work ? what can one do ?

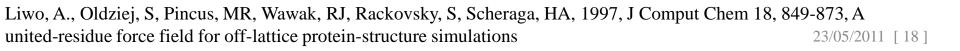

results from first model

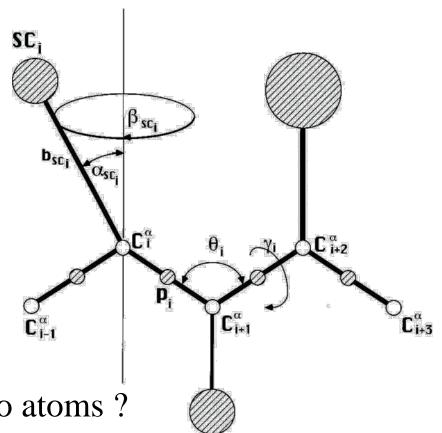

- try to "optimise" protein structure
- for 50 residues, maybe about 5 Å rms
 - maybe not important
- model does..
 - make a hydrophobic core
 - put charged and polar residues at surface
 - differentiate between possible and impossible structures
- model does not
 - reproduce any geometry to Å accuracy
 - details of secondary structure types
 - not the intention
 - predict physical pathways
 - depend on subtle sequence features (simplicity of c_{ij} matrix)


Improvements to simple model

- aim
 - biggest improvement for least complication
- possibilities
 - more points per residue
 - more complicated c_{ij} matrix...
 - an example weakness
- important structural features of proteins
 - all proteins have hydrogen bonds at backbone
 - proteins differ in their sidechain interactions..

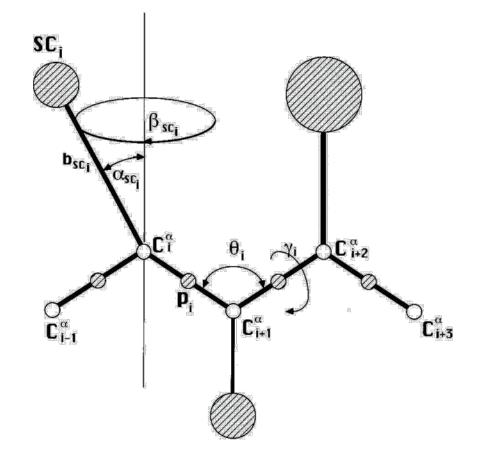
more complicated interactions





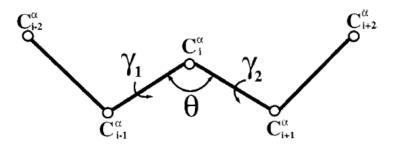
Scheraga model

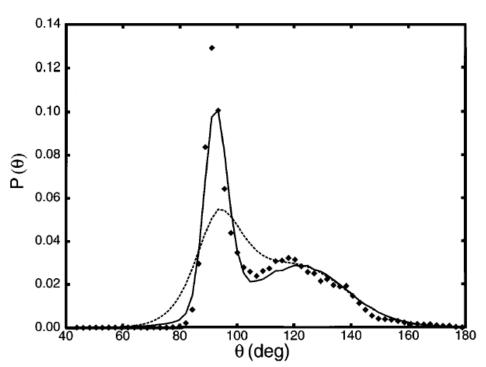
- 3 points per residue
- 2 for interactions
 - p_i is peptide bond centre
 - SC_i is sidechain
- 1 for geometry
 - C^α
- $C^{\alpha} C^{\alpha}$ fixed at 3.8 Å



Terms in Scheraga model

- Total quasi energy =
 - side-chain to side-chain
 - side-chain to peptide
 - peptide to peptide
 - torsion angle γ
 - bending of θ
 - •
- bending α_{sc}

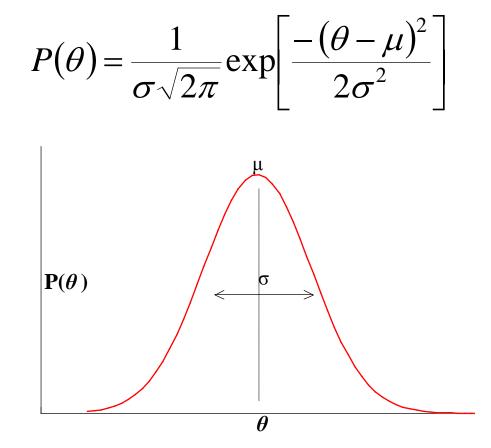



angle between C^{α} sites

- cunning approach
 - look at θ distribution
 - model with Gaussians
- then say

$$U(\theta)^{bend} = -RT\log P(\theta)$$

• where *P*(*x*) is the probability of finding a certain *x*



Gaussian reminder

- get μ and σ from fitting
- angle θ depends on structure
- how would forces work ?
- express θ in terms of *r*'s

• use
$$U(\theta)^{bend} = -RT \log P(\theta)$$

• take $\frac{dU}{d\theta} \frac{\partial \theta}{\partial \vec{r}}$

pseudo torsion term

SC

b_{sc,}

ßsc

 α_{sc}

- like an atomic torsion $U(\gamma_i) = a_i \cos n\gamma_i + 1 + b_i \sin n\gamma_i + 1$
 - *n* varies from 3 to 6 depending on types *i*, *j*
 - three kinds of *i*,*j* pair
 - gly
 - pro
 - others

- net result ?
 - residues will be positioned so as to populate correct parts of ramachandran plot
 - this model will reproduce α -helix and β -sheets

C^a_{i+2}

side-chain peptide

- maybe not so important

 - mostly repulsive *U*^{sc-peptide}(*r*) = kr⁻⁶/₆ *k* is positive, so energy goes up as particles approach

side chain interactions

Familiar
$$U(r_{ij}) = 4\varepsilon_{ij} \left(\sigma_{ij} r_{ij}^{-12} - \sigma_{ij} r_{ij}^{-6}\right)$$

- but, consider all the σ and ε
- main result
 - some side chains like each other (big ε)
 - some pairs can be entirely repulsive (small ε big σ)
 - some not important (small ε small σ)

more complications

- real work used
 - different forms for long range interactions
 - cross terms in pseudo angles

What can one do?

Typical application Background

- protein comparison lectures..
- different sequences have similar structure
 - can we test some structure for a sequence
- Remember sequence + structure testing in modellingÜbung?
- here
 - given some possible structures for a sequence
 - can be tested with this simple force field
- What can we not do?
- physical simulations
 - think of energy barriers (not real)
 - time scale

summary of philosophy

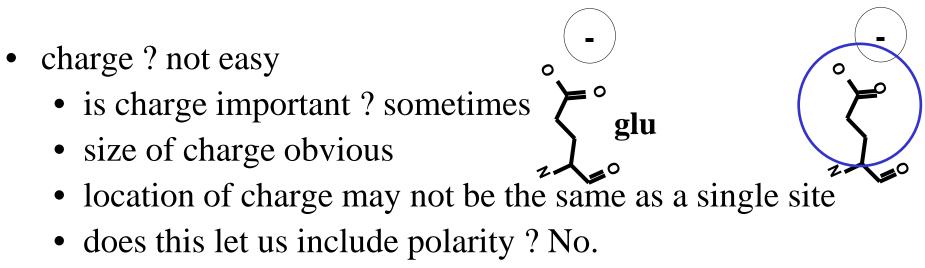
- Is any model better than others ?
- Each model has represent something of interest
 - hydrophobic / hydrophilic separation
 - reasonably good quality structure with
 - real secondary structure
 - accurate geometry
- Main aims
 - pick the simplest model which reproduces quantity of interest
- Are there bad models ?
 - complicated, but not effective
 - interaction sites at wrong places
 - not efficient
 - not effective

Parameterisation..

Problem example

- charge of an atom ?
 - can be guessed, measured ? calculated from QM
- ε and σ in atomistic systems
 - can be taken from experiment (maybe)
 - adjust to reproduce something like density
- What if a particle is a whole amino acid or sidechain ?
 - is there such a thing as
 - charge ?
 - ε and σ ?

Approaches to parameterisation


General methods

- average over more detailed force field (brief)
- optimise / adjust for properties (brief)
- potentials of mean force / knowledge based (detailed)

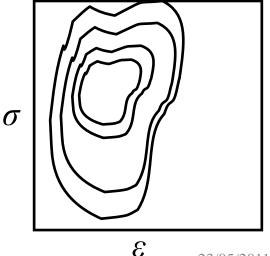
From detailed to coarse grain

Assume detailed model is best

- Can we derive coarse grain properties from detailed ? Examples – consider one or two sites per residue
- mass ? easy add up the mass of atoms (also boring)

• is this the right way to think about it ?...

Averaging over details is not easy

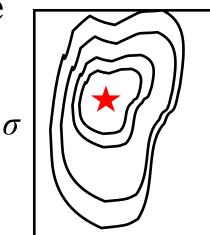

If we have electrostatics

- perhaps we can have coarse electrostatics
- maybe better to forget serious physics / strict electrostatics Earlier example (Kuntz et al)
- pairwise interactions like $(r_0^2 r_{ij}^2)$ + term for sending residues / to from centre of molecule
- you can not easily get parameters from a more detailed force field here
- General interaction between two residues
- will depend on orientation, distance, other neighbours
- not all orientations occur equally likely
- sensible averaging not obvious
- better approach ...

Parameterising by adjustment

Basic idea

- build some representation (like examples above)
- adjust parameters to give desired result
- An example method
- define a simple force field like
 - run a calculation and measure $U(r_{ij}) = 4\varepsilon_{ij}(\sigma_{ij}r_{ij}^{-12} \sigma_{ij}r_{ij}^{-6})$
 - density ? how near to correct structure ?
 - repeat for many values of ε and σ
 - build a cost / merit map



mapping parameter space

What does this tell us ?

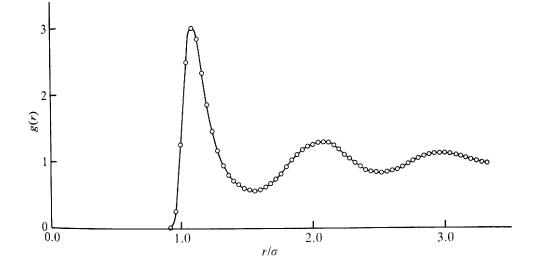
- pinpoint the best ε and σ
- see that ε is critical, σ less so

Good result ?

- parameters from one or several proteins should work one all Refinement ?
- optimisation can be automated Problems
- scheme requires a believable measure of quality
- easy for two parameters
- possible for 3, 4 parameters
- very difficult for 100 parameters

parameterising from potential of mean force

Potential of mean force ... knowledge based score functions


- very general
- history from atomistic simulations

Basic idea .. easy

• from radial distribution function, to something like energy..

Intuitive version of potential of mean force

- radial distribution function g(r)
 - probability of finding a neighbour at a certain distance

• what does this suggest about energy ?

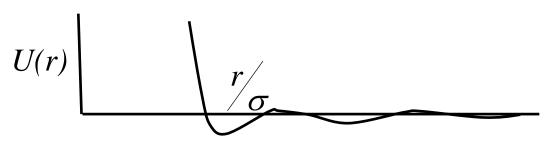
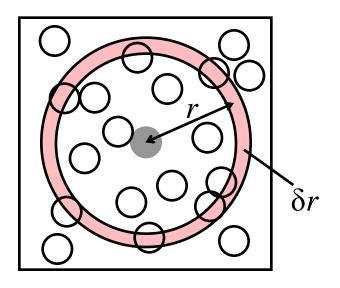


diagram from Allen, MP, Tildesley, DJ, Computer simulation of liquids, Oxford University Press, 1990 23/

Radial distribution function

• Formal idea


$$g(r) = \frac{N_{neighbours \ seen(r)}}{N_{neighbours \ expected(r)}}$$

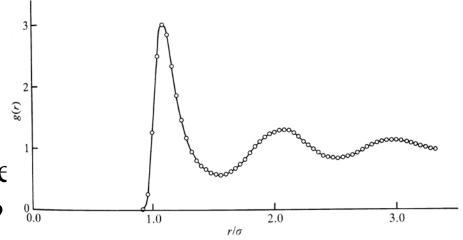
- *N* particles
- V volume

$$N_{expected} = \frac{V_{shell}}{V}N$$

- Calculating it ?
 - define a shell thickness (δr)
 - around each particle
 - at each distance, count neighbours within shell

$$g(r) = \frac{V}{NV_{shell}} N_{shell}(r)$$

Rationale for potentials of mean force


• For state *i* compared to some reference *x*

$$\frac{p_i}{p_x} = \frac{e^{\frac{-E_i}{kT}}}{e^{\frac{-E_i}{kT}}}$$
$$= e^{\frac{E_x - E_i}{kT}}$$
$$\ln \frac{p_i}{p_x} = \frac{E_x - E_i}{kT}$$
$$\Delta E = kT \ln \frac{p_i}{p_x}$$

Information in distribution function

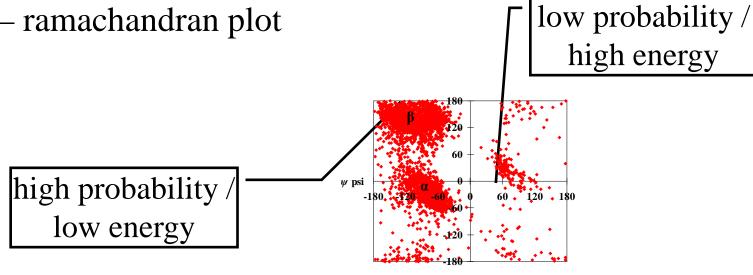
Intuitive properties ?

- how likely is it that atoms get ne
- what would a crystal look like ?
- what if interactions are
 - very strong (compared to temperature)
 - very weak
- Seems to reflect
 - strength of interactions / order
- Relate this back to energy

Energy from g(r)

from statistical mechanics $g(r) = e^{-w(r)/kT}$

- use work w(r) for a picture moving particle by rso strictly $w(r) = -kT \ln g(r)$
- already useful for looking at liquid systems
- properties
 - are we looking at potential energy *U* or free energy *G* ?
 - if our results from nature (or simulation) free energy
- how would we get g(r)?
 - experiment ? sometimes
 - simulation easy
- assumptions
 - our system is at equilibrium
 - it is some kind of ensemble


Generalising ideas of potential of mean force

What else can we do?

think of more interesting system (H_20)

Would we express our function in terms of O?H?

- both valid
- could look at the work done to bring an O to O, O to H, H to H More general..
- are we limited to distances? No
- example ramachandran plot

Reformulating for our purposes

Can one use these ideas for proteins ?

Our goal ?

- a force field / score function for deciding if a protein is happy
- work with particles / interaction sites
- slightly different formulation
 - if I see a pair of particles close to each other,
 - is this more or less likely than random chance ?
 - treat pieces of protein like a gas
 - care about types of particles (unlike simple liquid)
- Let us define...

Score energy formulation

Define

$$W_{AB}(r) = -RT \ln \left(\frac{N_{AB}^{obs}(r \pm \delta r)}{N_{AB}^{exp}(r \pm \delta r)} \right)$$

- N_{AB}^{obs} how many times do we see
 - particles of types A and B
 - distance r given some range δr
- N_{AB}^{exp} how often would you expect to see AB pair at r?
- remember Boltzmann statistics

This is not yet an energy / score function !

• it is how to build one

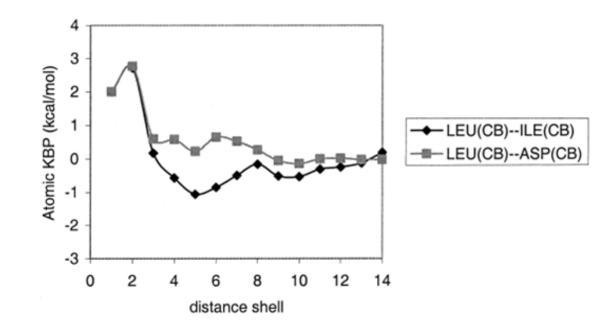
Intuitive version

- Cl⁻ and Na⁺ in water like to interact (distance r^0)
- N_{AB}^{obs} is higher than random particles
- $W_{\text{ClNa}}(r)$ is more negative at r^0

Details of formulation

$$W_{AB}(r) = -RT \ln \left(\frac{N_{AB}^{obs}(r \pm \delta r)}{N_{AB}^{exp}(r \pm \delta r)} \right)$$

- looks easy, but what is *N*^{exp} ?
- maybe fraction of particles is a good approximation
 - $N_{NaCl}^{exp} = N_{all} X_{Na} X_{Cl}$ (use mole fractions)
- use this idea to build a protein force field / score function


Protein score function

Arbitrarily

- define interaction sites as one per residue
 - maybe at C^{α} or C^{β}
- collect set of structures from protein data bank
- define a distance (4 Å) and range (± 0.5 Å)
- count how often do I see
 - gly-gly at this range, gly-ala, gly-X, X-Y ...
 - gives me N^{obs}
 - how many pairs of type gly-gly, gly-ala, gly-X, X-Y... are there ?
 - gives me N^{exp}
 - repeat for 5 Å, 6 Å, ...
- resulting score function...

final score function

- for every type of interaction AB ($20 \times 21 / 2$)
 - set of $W_{AB}(r)$

All ingredients in place

- can we use this for simulations ? not easy
- can we use to score a protein ? yes

Names

• Boltzmann-based, knowledge based

Lu, H and Skolnick, J (2001) Proteins 44, 223-232, A distance dependent knowledgebased potential for improved protein structure selection

Applying knowledge-based score function

Take your protein

- for every pair of residues
 - calculate $C^{\beta} C^{\beta}$ distance (for example)
 - look up type of residues (ala-ala, trp-ala, ...)
 - look up distance range
 - add in value from table
- what is intuitive result from a
 - a sensible protein / a misfolded protein ?
- is this a real force field ? yes
- is this like the atomistic ones ? no
 - there are no derivatives (dU/dr)
 - it is not necessarily defined for all coordinates

Practical Problems Boltzmann score functions

Practical

- Do we have enough data ?
 - how common are Asp-Asp pairs at short distance ?
- How should we pick distance ranges ?
 - small bins (δr) give a lot of detail, but there is less data
- What are my interaction sites ?
 - C^{α} ? C^{β} ? both ?
- Data bias
 - Can I ever find a representative set of proteins
 - PDB is a set of proteins which have been crystallised

Problems of Principle

- Boltzmann statistics
 - is the protein data bank any ensemble ?
- Is this a potential of mean force ? Think of Na, Cl example
 - that is a valid PMF since we can average over the system
- Energy / Free energy
 - how real ?
- *N*^{*exp*} ? how should it be calculated ?
 - is the fraction of amino acid a good estimate ? No.
 - there are well known effects.. Examples

$$i,i+2$$

 $i,i+4$ very different statistics

Boltzmann based scores: improvements / applications

- collect data separately for (i, i+2), (i, i+3), ...
 - problems with sparse (missing) data
- collect data on angles
- collect data from different atoms
- collect protein small molecule data

Are these functions useful ?

- not perfect, not much good for simulation
- we can take any coordinates and calculate a score
 - directly reflects how likely the coordinates are
- threading

Parameterising summary

- Inventing a score function / force field needs parameters
- totally invented (Crippen, Kuntz, ...)
- optimisation / systematic search
- statistics + Boltzmann distribution

Summary of low-resolution force fields

Properties

- do we always need a physical basis ?
- do we need physical score (energy)
 Questions
- pick interaction sites
- pick interaction functions / tables
- What is your application ?
- simulation
 - reproducing a physical phenomenon (folding, binding)
- scoring coordinates

Next

• even less physical