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General notes on the program: force field

I we are simulating a Lennard-Jones system, e.g. liquid Argon

I periodic boundary conditions

I nearest image convention: rcut < L/2
I Weeks-Chandler-Andersen (WCA) potential

I special case of the Lennard-Jones (LJ) potential
I truncated at minimum of LJ potential
I minimum shifted to zero
I so both energy and force are zero at the cutoff
I purely repulsive

picture from http://matdl.org/matdlwiki/index.php/Image:WCA_potential.jpg
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General notes on the program: simulation

I in the NVT ensemble, the following are constant throughout
the simulation

I number of particles (N)
I volume (V)
I temperature (T)

I we estimate ensemble averages via Metropolis Monte Carlo
I this program calculates:

I potential energy per particle
I pressure (by calculating the virial)

I there are no dynamics, therefore no explicit kinetic energy

I once again: ensemble averages are all that matter here

3/14



Short reminder: Ensemble averages
I NVT ensemble: we have many snapshots (microstates) of our

system, each microstate has a probability
I ensemble: Ω
I snapshot / microstate: ω
I probability of a microstate in the ensemble: p(ω)

I given some physical property of the system, e.g. potential
energy, pressure, etc.

I physical property of a snapshot: A(ω)

I then the expected value of A averaged over all of Ω is

〈A〉 =
∑
ω∈Ω

p(ω)A(ω)

or

〈A〉 =

∫
Ω

p(ω)A(ω)dω
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Short reminder: Monte Carlo integration
Problems of naive summation or integration

I usually can’t exhaustively sum a huge number of states
I direct numerical integration often impossible for

high-dimensional systems (such as ours)

Monte Carlo integration
I take random snapshots, calculate physical property, weigh

with snapshot probability, and average this
I Problem: we need to know the partition function (Z ) to know

the probability of a state in the NVT ensemble

p(ω) =
1

Z
e−E(ω)/kT

Z =
∑
ω∈Ω

e−E(ω)/kT

or

Z =

∫
Ω

e−E(ω)/kTdω
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Short reminder: Monte Carlo integration (contd.)

More problems of Monte Carlo integration (for our system)
I at liquid densities there will be

I many many high-energy conformations with a tiny tiny
probability

I few low-energy conformations with a comparably high
probability

I ... but these low-energy conformations will dominate the
ensemble averages

I Monte Carlo integration samples the microstates uniformly,
then weighs them with their probability

I it would be good if we didn’t waste so much time with
low-probability states that don’t contribute to the average
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Short reminder: Metropolis Monte Carlo

Metropolis Monte Carlo to the rescue

I Metropolis Monte Carlo constructs a Markov chain of states
I the Markov chain visits states according to their probabilities

I without having to know the partition function beforehand !

I a uniform (unweighted) average gives us the ensemble average

I same result as Monte Carlo integration, but much faster
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Short reminder: Metropolis Monte Carlo (contd.)

The Markov chain in Metropolis Monte Carlo

I we generate a new state by making a move from an old state

I move probability consists of trial probability and acceptance
probability

I acceptance probability depends only on energy difference

Careful:

I detailed balance for trial probability guarantees desired
equilibrium probability distribution of generated states

I without detailed balance it most probably won’t work
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Back to our program...

Metropolis Monte Carlo quite simple to use in practise
I from old state make a trial move

I our program tries to move each particle in turn
I all directions are equally likely, so detailed balance holds

I accept move depending on energy difference between new and
old state

I after each trial move, we need to only recalculate the
interactions of the particle we attempted to move

I this is done by the calc i() function in the program
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General comments on the exercise

I graphs must have
I labels on axes
I units on axes (here:“reduced units”)
I a title or caption to state what is shown

I look at both pressure and potential energy
I look at averages

I some things are hard to see from instantaneous values alone
I it is the averages we are interested in
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How to make proper graphs with gnuplot

... maybe this should have been in the exercise notes ...

set title ’Average pressure comparison’
set xlabel ’step’
set ylabel ’pressure (reduced units)’
plot "mc.res" us 1:2 t ’monte’,

"mc 2.res" us 1:2 t ’monte 2’
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Part I: Convergence of averages

I the simulation starts in a cubic lattice
I often partially filled (depends on Nparticles)
I that state is probably very un-typical
I we generate new states from old ones, so the first states will

all be unrealistic

I ignore the beginning of the simulation
I it would be better if the computed averages did this too

I wait until averages have converged
I how long in general?

I depends on force field, density, temperature

I could be treacherous
I metastable states give a false sense of convergence
I our system should be safe from that if we keep density and

temperature in a friendly range (density not too high,
temperature not too low)
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Part II: Matching averages

I number of particles should have little impact on the averages
I remember that potential energy is calculated per particle
I pressure is an intensive property

I qualitatively, higher temperature leads to
I higher average potential energy per particle
I higher average pressure

I qualitatively, higher density leads to
I lower average potential energy per particle, then higher again

at high densities
I higher average pressure

I can search by trial and error

I or write a script to search the parameter space
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Part III: Miscalculated averages

I particles only moving in one direction

I detailed balance is violated

I instantaneous values look similar

I need to look at averages to see the difference
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