Structure and Simulation: Monte Carlo exercise Answers 31.5.2011

General notes on the program: force field

- ▶ we are simulating a Lennard-Jones system, e.g. liquid Argon
- periodic boundary conditions
- nearest image convention: $r_{cut} < L/2$
- Weeks-Chandler-Andersen (WCA) potential
 - special case of the Lennard-Jones (LJ) potential
 - truncated at minimum of LJ potential
 - minimum shifted to zero
 - so both energy and force are zero at the cutoff
 - purely repulsive

picture from http://matdl.org/matdlwiki/index.php/Image:WCA_potential.jpg

General notes on the program: simulation

- in the NVT ensemble, the following are constant throughout the simulation
 - number of particles (N)
 - volume (V)
 - temperature (T)
- we estimate ensemble averages via Metropolis Monte Carlo
- this program calculates:
 - potential energy per particle
 - pressure (by calculating the virial)
- there are no dynamics, therefore no explicit kinetic energy
- once again: ensemble averages are all that matter here

Short reminder: Ensemble averages

- NVT ensemble: we have many snapshots (microstates) of our system, each microstate has a probability
 - ensemble: Ω
 - snapshot / microstate: ω
 - probability of a microstate in the ensemble: $p(\omega)$
- given some physical property of the system, e.g. potential energy, pressure, etc.
 - physical property of a snapshot: $A(\omega)$
- then the expected value of A averaged over all of Ω is

$$\langle A
angle = \sum_{\omega \in \Omega} p(\omega) A(\omega)$$

or

$$\langle A \rangle = \int_{\Omega} p(\omega) A(\omega) d\omega$$

Short reminder: Monte Carlo integration

Problems of naive summation or integration

- usually can't exhaustively sum a huge number of states
- direct numerical integration often impossible for high-dimensional systems (such as ours)

Monte Carlo integration

- take random snapshots, calculate physical property, weigh with snapshot probability, and average this
- Problem: we need to know the partition function (Z) to know the probability of a state in the NVT ensemble

$$p(\omega) = \frac{1}{Z} e^{-E(\omega)/kT}$$
$$Z = \sum_{\omega \in \Omega} e^{-E(\omega)/kT}$$
or
$$Z = \int_{\Omega} e^{-E(\omega)/kT} d\omega$$

Short reminder: Monte Carlo integration (contd.)

More problems of Monte Carlo integration (for our system)

- at liquid densities there will be
 - many many high-energy conformations with a tiny tiny probability
 - few low-energy conformations with a comparably high probability
 - ... but these low-energy conformations will dominate the ensemble averages
- Monte Carlo integration samples the microstates uniformly, then weighs them with their probability
- it would be good if we didn't waste so much time with low-probability states that don't contribute to the average

Short reminder: Metropolis Monte Carlo

Metropolis Monte Carlo to the rescue

- Metropolis Monte Carlo constructs a Markov chain of states
- the Markov chain visits states according to their probabilities
 - without having to know the partition function beforehand !
- ► a uniform (unweighted) average gives us the ensemble average
- same result as Monte Carlo integration, but much faster

Short reminder: Metropolis Monte Carlo (contd.)

The Markov chain in Metropolis Monte Carlo

- we generate a new state by making a move from an old state
- move probability consists of trial probability and acceptance probability
- acceptance probability depends only on energy difference
 Careful:
 - detailed balance for trial probability guarantees desired equilibrium probability distribution of generated states
 - without detailed balance it most probably won't work

Back to our program...

Metropolis Monte Carlo quite simple to use in practise

- from old state make a trial move
 - our program tries to move each particle in turn
 - all directions are equally likely, so detailed balance holds
- accept move depending on energy difference between new and old state
- after each trial move, we need to only recalculate the interactions of the particle we attempted to move
 - this is done by the calc_i() function in the program

General comments on the exercise

graphs must have

- labels on axes
- units on axes (here: "reduced units")
- a title or caption to state what is shown
- look at both pressure and potential energy
- look at averages
 - some things are hard to see from instantaneous values alone
 - it is the averages we are interested in

How to make proper graphs with gnuplot

... maybe this should have been in the exercise notes ...

```
set title 'Average pressure comparison'
set xlabel 'step'
set ylabel 'pressure (reduced units)'
plot "mc.res" us 1:2 t 'monte',
        "mc 2.res" us 1:2 t 'monte 2'
```

Part I: Convergence of averages

- ▶ the simulation starts in a cubic lattice
 - ▶ often partially filled (depends on N_{particles})
 - that state is probably very un-typical
 - we generate new states from old ones, so the first states will all be unrealistic
- ignore the beginning of the simulation
 - it would be better if the computed averages did this too
- wait until averages have converged
- how long in general?
 - depends on force field, density, temperature
- could be treacherous
 - metastable states give a false sense of convergence
 - our system should be safe from that if we keep density and temperature in a friendly range (density not too high, temperature not too low)

Part II: Matching averages

- number of particles should have little impact on the averages
 - remember that potential energy is calculated per particle
 - pressure is an intensive property
- qualitatively, higher temperature leads to
 - higher average potential energy per particle
 - higher average pressure
- qualitatively, higher density leads to
 - lower average potential energy per particle, then higher again at high densities
 - higher average pressure
- can search by trial and error
- or write a script to search the parameter space

Part III: Miscalculated averages

- particles only moving in one direction
- detailed balance is violated
- instantaneous values look similar
- need to look at averages to see the difference

