Administration

- Sprache?
 - zu verhandeln (Englisch, Hochdeutsch, Bayerisch)
- Selection of topics
 - Proteins / DNA / RNA
- Two themes
 - Torda: larger molecules, proteins
 - Rarey: Chemoinformatics, Wirkstoff Entwurf
 - Vorlesungen 6 (Torda) + 7 (Rarey)
 - Übungen 7 + 7

Administration

- Who are we? (Torda parts)
 - Andrew Torda
 - + Thomas Margraf + Björn Hansen
- Where am I
 - 42838 7331
 - ZBH 1st floor (Bundesstr. 43)
- Background
 - numerical simulations
- Administrative helper
 - Annette Schade (schade@zbh.uni-hamburg.de)

Fragen

1. Montag 4 April

Wo waren Sie?

2. Für nächsten Montag

Sind Sie in Stine angemeldet?

My Lectures

Sequences

• why we need to compare them (now)

Predictions

- what shape is this molecule?
- will this small molecule inhibit some enzyme?
- will this molecule be broken down in the body quickly?

. . .

Predictions – different approaches

- First principles (physics, chemistry)
- Finding patterns (underlying principles not known)
- Similarity

... explanation

First principles prediction

- protein structure example
 - a protein molecule = set of atoms in space
 - I know all the interactions between the atoms
 - should be able to predict the 3D structure

- quantum chemistry
 - I have a model for electron wave functions
 - can I predict electron density around each atom?
 - predict pK_a for this molecule?
 - ...

• elegant, expensive, needs good models

Finding patterns

- Take known data collect properties, look for correlations
 - look at mol wt, aromatic/aliphatic, substituents, ...
 - for each molecule collect pK_a
 - hope patterns can be found
- gene regulator recognition
 - take known examples
 - look at GC content
 - proximity to protein
 - sizes ...
- field of "data mining", machine learning
- often little understanding of problem / chemistry
- often works

OH

Similarity

- Answer to many questions...
 - DNA
 - is this region coding?
 - where does the reading frame start ?
 - is this region involved in regulator binding?
 - protein sequence
 - can one guess the structure?
 - is this membrane bound?
 - does it have a certain activity (kinase, transferase, ..)?
 - protein structure (maybe from structural genomics)
 - what is a likely function?
 - from proteomics, we know the N-terminal 6 residues
 - what protein could it be?

Prediction by similarity

- For some examples
 - solve structure of a protein
 - find DNA which binds to regulators
 - measure that RNA has enzymatic activity

slow, expensive must be done

- For some queries / your sequence
 - is your protein sequence similar to a known structure?
 - is your stretch of DNA similar to a known regulatory region?
 - is your RNA similar to some RNAzyme?
- why is experiment it so slow and expensive ?

Real experiments

- very problem specific
- DNA to find function? make knockouts
 - essential (bad news)
 - involved in regulation still more measurements
 - involved in some pathway
- Protein usually has to be cloned, expressed, ...
 - function in vitro, in vivo
 - structure from NMR, crystallography
- RNA
 - how do you show it is involved in regulation (assays?)
 - how can you show it is a riboswitch?
 - structures difficult

Similarity in sequences

- Protein / nucleotide
 - same ideas, differences later
- Questions
 - are two sequences similar?
 - suspected similarity
 - how reliable is it?
 - detailed alignments (modelling, important residues, ..)
- Plan
 - generalities
 - alignment methods
 - DNA versions
 - Protein versions
 - differences

Alignments and Similarities

- Problem
- . . A C A C T G A C T A . .
- A T T G A G T A . . .
- 1 0 1 1 1 0 1 1 . .
- 4 of 8 positions match
- implicit
 - I have already moved second sequence over the first
- gaps
- . . . A C A C T T G A C T A . . .
- A T T G A G T A . . .
- alignment not so obvious (gaps anywhere)
 - quick look

dot plot

human and simian HIV

dot plot filtered

- similarity up to about 5200
- circled region?
 - not so clear
- easy for a human to recognise
- not so easy to automate
- worse case ...
 - two protein sequences

protein dot plot

sequence

2 proteins

- 2nrl, 2o58
- tuna / horse myoglobin
- are they really similar?
- how real is the diagonal?

- what is the identity?
 - $\approx 45 \%$
- how similar are these two proteins?
- is there a "correct alignment"? Physical interpretation?

Properties of alignment?

correctness of alignment

• The same proteins as before tuna / horse myoglobin

- there are no holes?
 - there are some differences
 - some bits are longer

for almost every pink residue, there is a corresponding grey residue

If one knew the structure..

• would you have recognised this from dotplot ?

- look at residue 51 in dot plot
 - aligned residue not clear
- look in structure
 - aligned residues clear

Clearer Example

- hydrogenases
 - 40 % sequence identity
 - 2frvG & 1cc1S

- proteins obviously similar
 - sequence identity OK
 - gaps and insertions
- at the sequence level?

Seq	ID	40.6	%	(103	3 /	254)	in 280	total	in	cludi	ng g	aps	
	:	1		:	2	:	3	:	4	:	5	:	6
	:	0		:	0	:	0	:	0	:	0	:	0
kka	pviw	vqgqq	gct	gcsv	sl:	lnavhr	prikeil	ldvisl	efh	ptvma	sege	malahm	yeia
krp	svvy	lhnae	ect	gcse	sv.	lrtvdı	yvdeli	ldvism	dyh	etlma	gagh	aveea-	l-he
	:	1	:		2	:	3	:	4	:	5	:	
	:	0	:		0	:	0	:	0	:	0	:	
	:	0		:	0	:	0	:	1	:	1	:	1
	:	7		:	8	:	9	:	0	:	1	:	2
	:	0		:	0	:	0	:	0	:	0	:	0
ekf	ngnf	fllve	ega:	ipta	ke	gryci	<i>r</i> geakah	hhevtm	mel	irdla	pksl	atvavg	tcsa
aik	g-df	vcvi	egg:	ipmg	ıdg	gywgk-		vggrnm	ydi	caeva	pkak	aviaig	tcat
0	:	. ()	:		0		:	0	:	1	:	1
6	:		7	:		8		:	9	:	0	:	1
0	:	. ()	:		0		:	0	:	0	:	0
	:	1		:	1	:	1	:	1	:	1	:	1
	:	3		:	4	:	5	:	6	:	7	:	8
	:	0		:	0	:	0	:	0	:	0	:	0
							iekllvn						
7 gg	vqaa	kpnpt	gt	vgvr	ea.	lgklgv	/kain	iagcpp	npm	mfvgt	vv	hlltk-	
	:	1	:		1	:	1	:	1			1	
	:	2	:		3	:	4	:	5	:		6	
	:	0	:		0	:	0	:	0	:		0	
	:	1		:	2	:	2	:	2		:	2	•/
	:	9		:	0	:	1	:	2		:	3	
	:	0		:	0	:	0	:	0		:	0	•
							ldkydns						
gmp	eldk	qgrp	mf:	fget	vho	dncpr	lkhfeag			eakkg	ycly	elgckg	pdty
:		1	:	1	-	:	1	: 2		:	2	:	2
:		7	:	8	3	:	9	: 0		:	1	:	2

Sequence versus structure

- Is there a "correct" alignment?
 - if we know the structure yes
 - evolutionary argument who mutated to who
- do we always know the structure?
 - if so, we would not do these lectures
 - sequences are cheap
 - structures are expensive
- how bad can alignments be ? (and still sensible)
- mission for today ?
 - how does one find the best alignment based on sequence

Why?

Where this is going to

- how to exploit sequence information
- how to get alignments
 - easy hard
- aim
 - find similarities / get information about a new protein

Alignment methods

- best alignment not obvious
- . . . C G A T C C T C C T C . . .
- 6 matches or
- C G A T C C T C C T C .
- also 6 matches
- can we invent some rules to say which is best?

Simple scoring

• For two sequences of length 10, how many alignments could I generate ?

```
Q R S T U V W X Y - Z
Q R S T U V W X - Y Z then with gap 2
Q R S T U V W X Y - Z
```

- then with multiple gaps ... combinatorial explosion
- do not tackle the problem directly

Mission

- For DNA, protein, RNA
 - develop some scoring scheme
 - maximize matches and similarities
- algorithm
 - allow some gaps, not too many
 - must be much faster than brute force
 - these methods apply to proteins and nucleotides
- What is coming
 - simple scoring –DNA
 - full alignment algorithm (Needleman and Wunsch)
 - better scoring proteins

Scoring for DNA

- Sensible scheme
 - matched pairs 2
 - mismatch -3
 - gaps -2

$$2 \quad 2-2 \quad 2 \quad -2 \quad 2 \quad -2 \quad 2 \quad 2-3 \quad 2$$

- more sophisticated...
 - gap opening costs 2
 - gap widening costs 1
 - so $cost = cost_{open} + (n_{gap} 1)cost_{widen}$

Representing alignments

• sequences GATTCAGGTTA and GGATCGA

would meanGGAT-CGA-----GATTC-AGGTTA

• notes...

Representing alignments

	g	g	a	t	С	g	a		
g						• 2	align	men	t does not have to go to
a						f	irst /	las1	t row or column
t							which	h ic	r and wie arbitrary
t						\	WIIIC.	11 15	x and y is arbitrary
C					_	• {	gaps	= rc	w or column is skipped
a						,	work		r \ does not matter
g								_	
g						• (lirec	tion	must be consistent
t							• ***	011	ly go $\rightarrow \downarrow \searrow$
t							W	C OII	$y g \cup \rightarrow \downarrow x$
a									

• make sure this is clear

Representing alignments with a mismatch

• sequences GCTTCAGGTTA and GGATCGA

would meanGGAT-CGA-----GCTTC-AGGTTA

Calculating alignment - steps

Needleman and Wunsch algorithm

- 1. fill score matrix
- 2. find best score possible in each cell
- 3. traceback

fill score matrix

• For convenience, add some zeroes to the ends

	g	g	a	t	C	g	a	
0	0	0	0	0	0	0	0	0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0								0
0	0	0	0	0	0	0	0	0
	0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	0 0	0 0 0 0 0 <			

Mission

- find path through this matrix with best score
- account for gaps

fill score matrix

- For convenience, add some zeroes to the ends
- Add in match, mismatch scores

		g	g	a	t	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-3	2	-3	-3	-3	2	0
t	0	-3	-3	-3	2	-3	-3	-3	0
t	0	-3	-3	-3	2	-3	-3	-3	0
С	0	-3	-3	-3	-3	2	-3	-3	0
a	0	-3	-3	2	-3	-3	2	2	0
g	0	2	2	-3	-3	-3	2	-3	0
g	0	2	2	-3	-3	-3	2	-3	0
t	0	-3	-3	-3	2	-3	-3	2	0
t	0	-3	-3	-3	2	-3	-3	-3	0
a	0	-3	-3	2	-3	-3	-3	2	0
	0	0	0	0	0	0	0	0	0
t	0 0	-3 -3 -3	-3 -3	-3 -3 2	2 -3	-3 -3 -3	-3 -3 -3	2 -3 2	C

Mission

- find path through this matrix with best score
- account for gaps

Summing the elements

- start at top left
- move right, then next line
- at each cell
 - find best score it could possibly have

		g	g	a	נן	C	Ŋ	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	6	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	6	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

Diagonal (no gaps)

for each cell, 3 possible scores

- 1. diagonal (no gap)
- 2. best from preceding column
- 3. best from preceding row

		g	g	a	t	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2,	3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	9	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	6	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

GAT

GAT

GG

GG

preceding row (gap)

for each cell, 3 possible scores

- 1. diagonal (no gap)
- 2. best from preceding row
- 3. best from preceding column

		g	g	a	ħ	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	6	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	6	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	3_	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

GAT G-T

preceding column (gap)

for each cell, 3 possible scores

- 1. diagonal (no gap)
- 2. best from preceding row
- 3. best from preceding column

		g	g	a	ע	C	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	₁ 6	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	9	0	-2	1
a	0	-3	-5	-6	-3	0	3	6	3
g	0	2	0	-6	-4	-1	6	0	6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

T-C TTC

The order of cells

- start at top left
- every cell has best score considering all possible routes
- at end, highest score is best path

		g	g	a	t	С	g	a	
	0	0	0	0	0	0	0	0	0
g	0	2	2	-3	-3	-3	2	-3	0
a	0	-3	-1	4	-3	-4	-5	4	0
t	0	-3	-3	-3	6	-1	-2	-3	4
t	0						—	•	
С	0								
a	0								
g	0								
g	0								
t	0								
t	0								
a	0								
	0								

 would also work if we went left and up

Reading the alignment

- find highest scoring cell (last row or column)
- how did we reach this cell?
 - how did we reach preceding cell?
 - •

_									
		g	Ф	a	נן	U	Ⴛ	a	
	0	0	0	0	0	0	0	0	0
g	0	2	Å	-3	-3	-3	2	-3	0
a	0	-3	-1	1	-3	-4	-5	4	0
t	0	-3	-3	-3	9,	-1	-2	-3	4
t	0	-3	-4	-4	4	3	1	0	2
С	0	-3	-5	-5	-2	6.		-2	1
a	0	-3	-5	-6	-3	0	3	۶,	3
g	0	2	0	-6	-4	-1	6	0	\ 6
g	0	2	4	-3	-4	-2	5	3	4
t	0	-3	-1	1	4	-2	-1	2	3
t	0	-3	-3	-1	3	1	-1	0	2
a	0	-3	-4	3	-4	0	-2	4	0
	0	0	-2	0	3	1	0	1	4

GGAT-CGA -GATTC-AGGTTA

Trick with traceback

- for each cell
 - how did we reach it? What was the preceding cell?

_									
		g	Ф	a	ħ	C	Ф	a	
	0	0	0	0	0	0	0	0	0
g	0	2	Å	-3	-3	-3	2	-3	0
a	0	-3	-1	1	_3	-4	-5	4	0
t	0	-3	-3	-3	6	-1	-2	-3	4
t	0	-3	-4	-4	4	<u>3</u>	1	0	2
С	0	-3	-5	-5	-2	\ 6.	0	-2	1
_	~	_	_		1	_	7		_
a	0	-3	-5	-6	-3	0	3	رم/	3
a g	0	-3 2	-5 0	-6 -6	-3 -4	-1	6	ρ/0	5 6
g	0	2	0	-6	-4	-1	6	6	\ 6
a	0	2	0	-6 -3	-4 -4	-1 -2	6 5	7 0 3	^ 6 4
g g t	0 0	2 2 -3	0 4 -1	-6 -3 1	-4 -4 4	-1 -2 -2	6 5 -1) 3 2	^ 6 4 3
g g t	0 0 0	2 2 -3 -3	0 4 -1 -3	-6 -3 1 -1	-4 -4 4 3	-1 -2 -2 1	6 5 -1 -1) 3 2 0	\ 6 4 3 2

GGAT-CGA -GATTC-AGGTTA

Summary (Needleman and Wunsch)

- Alignments are paths through the matrix
- There is an astronomical number of possibilities (with gaps)
- This algorithm has visited all of them and found best
- allows for gap costs of form $cost = cost_{open} + (n_{gap} 1)cost_{widen}$
- best or only method? wait..

Cost

- pretend both sequences are length *n*
- we have to visit n^2 cells in matrix
 - each time we have to look at a row or column of length $\approx n$
- total cost n^3 or worst cost $O(n^3)$
 - remember this for later

Smith and Waterman version

- So far: global alignments
 - best match, covers as much as possible
- Imagine proteins with 3 domains ABCDEABCDEABCDE QRSTUVBCDEQRSTU
- Want to see ...

ABCDEABCDEABCDE

QRSTUVBCDEQRSTU

not worth trying to align everything

- Use "Smith and Waterman" method
 - scoring scheme: matches positive, mismatches negative
 - during traceback
 - do not just look for max score
 - start with positive score
 - stop if score goes negative
- result: "local alignments" often most useful

Other alignment algorithms

- Needleman and Wunsch / Smith Waterman
 - for given problem optimal results
 - allow fancy gap penalties
 - $cost O(n^3)$

Other methods

• $O(n^2)$ – very small limitation on gaps

Faster

•

Faster Seeded Methods

blast, fasta, ... - popular programs, good web interfaces

- seeded
 - idea: use seeds / fragments of length k
 - 11 28 for DNA
 - 2 3 for protein
 - look for exact matches of query words in database
 - extend if found
 - time depends mainly length O(n) most of the time no matches
 - slow extension when a match is found
- seed size
 - very small = lots of unimportant matches (slow)
 - too big may miss a match if there are too many changes

Fast versus slow

- 2 sequences (protein or DNA)
 - time not an issue
 - 1000 alignments? Time still not an issue
 - $10^3 \times 10^3$ alignments? Your decision
- Databases
 - non-redundant protein sequence database
 - $\approx 11 \times 10^6$ sequences
 - $\approx 3.7 \times 10^9$ residues
 - must be fast
 - maybe occasionally miss a word
 - alignments may not be optimal

Problems so far

- We can align DNA sequences maybe proteins
- how biological are the alignments, gaps and costs?
- Coding versus non-coding DNA
 - 3 base pairs \rightarrow 1 residue

```
ACAG... 100's bases ... CGA...
```

AC-G... 100's bases ... CGA ... one base deletion

- 100's bases are shifted amino acids in protein all wrong
- non-coding region (binding / regulation / tRNA / rRNA..)
 - may not be so bad
- General problem degeneracy ...

Degeneracy and Scoring

- CCU, CCC, CCA, CCG are all proline (3rd position degenerate)
- CCC→CCA no problem
- CCC \rightarrow ACC pro \rightarrow ala (you die)
 - exactly the same mutation at DNA level $(C \rightarrow A)$
- our scoring scheme does not know about this
- rule
 - some mutations will have no effect
 - some are drastic
 - usually the third base in each codon is least important
- can we do better?

Scoring protein alignments

- two aspects
 - forget DNA
 - account for amino acid similarity
- instead of DNA work directly with protein sequences
- if our DNA is coding easy to say
 - CCUUCUUAU.. is pro-ser-tyr...
 - immediate gain
 - CCC→CCA or similar will not be seen
 - more subtle gain

Amino acid similarities

asp and glu

think of leu and ile

- many more similar amino acids
- glu →asp mutation, does it matter? sometimes not
- trp \rightarrow asp, big hydrophobic to small polar? usually bad news
- relevance to alignments

Why we need better protein scoring

ANDREWANDRWANDRWW aligned to QNDRDW

```
ANDREWANDRWANDRWW
ONDRDW------
```

ANDREWANDR-WANDRWW -----ONDRDW-----

ANDREWANDRWANDRWW
----QNDRDW

- one of which is biologically more likely $(E \rightarrow D)$
- how would we do it numerically?

Substitution matrices

- Earlier in DNA
 - match = 2
 - mismatch = -3
- We want a matrix that says

	D	Е	W	•••
D	10	5	-5	
E	5	10	-5	
W	-5	-5	15	
•••				

• A full matrix..

	A	C	G	T
A	2	-3	-3	-3
C	-3	2	-3	-3
G	-3	-3	2	-3
T	-3	-3	-3	2

A serious protein similarity matrix

• blosum62:

-2 -3 -3 -3 -2 -3 -3 -1 0

- some features
 - diagonal
 - similar
 - different

Using the score matrix

- Algorithm (global alignment, local, fast, ...)
 - unchanged
 - only scoring changes
 - appropriate gap penalties
- If possible use the protein sequence rather than DNA
 - not all DNA codes for proteins
 - regulators, tRNA, catalytic RNA, sRNA, ..
 - not possible for genomic comparisons
- automatically includes codons, amino acid similarity, ..
- where does this kind of matrix come from ?

Substitution Matrices

- Lots exist
 - PAM point accepted mutations
 - BLOSUM blocks substitution matrix
- Philosophy
 - if two amino acids are similar, we will see mutations often
- To quantify this..
- Take some very similar proteins (lots)

parts of some haemoglobins

HAHKIRVGPVNFKIJSHCIJVTIAAHIPAEFTPAVHASIDKFIASVSTVIJSK HAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSK HAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK HAHKIRVDAVNEKIISHCIIVTIAAHIPAEETPAVHASIDKELASVSTVITSK HAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK HAHKIRVDPVNFKIJSHCIJVTIAAHIPAEFTPAVHASIDKFIASVSTVIJSK HAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK HAHKIRVDPVNFKIJSHCIJVTIAAHIPAEFTPAVHASIDKFIASVSTVIJSK HAHKLRVDPVNFKLLSHCLLVTLAAHLPAEFTPAVHASLDKFLASVSTVLTSK HAHKIRVDPVNFKIJSHCIJVTIAAHIPAEFTPAVHASIDKFIASVSTVIJSK HAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSK HAHKI.RVDPVNFKI.I.SHCI.I.STT.AVHI.PNDFTPAVHASI.DKFI.SSVSTVI.TSK HAHKLRVDPVNFKLLSHCLLSTLAVHLPNDFTPAVHASLDKFLSSVSTVLTSK HAHKI.RVDPVNFKI.I.SHCI.I.STT.AVHI.PNDFTPAVHASI.DKFI.SSVSTVI.TSK HAHKLRVDPVNFKLLSHCLLVTLAAHHPDDFNPSVHASLDKFLANVSTVLTSK HAHKLRVNPVNFKLLSHSLLVTLASHLPTNFTPAVHANLNKFLANDSTVLTSK HAYKLRVDPVNFKLLSHCLLVTLACHHPTEFTPAVHASLDKFFTAVSTVLTSK HAOKLRVDPVNFKFLGHCFLVVVAIHHPSALTPEVHASLDKFLCAVGTVLTAK HAQKLRVDPVNFKFLGHCFLVVVAIHHPSALTAEVHASLDKFLCAVGTVLTAK HAOKLRVDPVNFKFLGHCFLVVVAIHHPSALTAEVHASLDKFLCAVGTVLTAK HAOKLRVDPVNFKLLGOCFLVVVAIHNPSALTPEAHASLDKFLCAVGLVLTAK HAYNLRVDPVNFKLLSOCIOVVLAVHMGKDYTPEVHAAFDKFLSAVSAVLAEK HAYNLRVDPVNFKLLSHCFQVVLGAHLGREYTPQVQVAYDKFLAAVSAVLAEK HAYILRVDPVNFKLLSHCLLVTLAARFPADFTAEAHAAWDKFLSVVSSVLTEK

parts of some haemoglobins

- HAHKLRVGPVNFKLLSHCLLVTLAAHT.DAFFTDAVHAST.DKFT.ASVSTVT.TSK
- HAHKLRVDPVNFKLLSHCLLSTLI HAHKLRVDPVNFKLLSHCLLVTLI
- HAHKLRVDAVNFKLLSHCLLVTL?
- HAHKLRVDPVNFKLLSHCLLVTL?
- HAHKLRVDPVNFKLLSHCLLVTL1
- HAHKLRVDPVNFKLLSHCLLVTL1
- HAHKLRVDPVNFKLLSHCLLVTL1
- HAHKLRVDPVNFKLLSHCLLVTL?
- HAHKLRVDPVNFKLLSHCLLVTL/
- HAHKLRVDPVNFKLLSHCLLSTLA
- HAHKLRVDPVNFKLLSHCLLSTLA
- HAHKLRVDPVNFKLLSHCLLSTL1
- HAHKLRVDPVNFKLLSHCLLSTL1
- HAHKLRVDPVNFKLLSHCLLVTL/
- HAHKLRVNPVNFKLLSHSLLVTL/
- HAYKLRVDPVNFKLLSHCLLVTLA
- HAOKLRVDPVNFKFLGHCFLVVV/
- HAOKLRVDPVNFKFLGHCFLVVV/
- HAQKLRVDPVNFKFLGHCFLVVV/
- HAQKLRVDPVNFKLLGQCFLVVVAIHNPSALTPEAHASLDKFLCAVGLVLTAK
- HAYNLRVDPVNFKLLSQCIQVVLAVHMGKDYTPEVHAAFDKFLSAVSAVLAEK
- HAYNLRVDPVNFKLLSHCFQVVLGAHLGREYTPQVQVAYDKFLAAVSAVLAEK
- HAYLLRVDPVNFKLLSHCLLVTLAARFPADFTAEAHAAWDKFLSVVSSVLTEK

- consider an example column
 - how many pairs do we have ? 1-2, 1-3, ... 2-3, 2-4, ... get n_{total}
 - count $n_{\rm HH}$, $n_{\rm HY}$, ...
 - $p_{\text{HH}} = n_{\text{HH}}/n_{total}$ would be probability that H is conserved (or another amino acid)
 - $p_{AB}=n_{AB}/n_{total}$ would be probability that A and B mutate to another

Calculating a substitution matrix

- We have all the probabilities p_{AB} and p_{AA}
- next step matrix element AB is $log_2(p_{AB})$ why log_2 ?
- is my example enough?
 - needs much more data so as to get good probabilities

Different matrices

- Lots of details PAM vs BLOSUM vs ... (not important)
- Degree of homology
 - if two sequences are very similar most residues not changed
 - longer evolutionary time many things change

Longer evolutionary times

- so far, probability of one mutation $A \rightarrow B$
- longer evolutionary time
- $D \rightarrow E \rightarrow D \rightarrow W \rightarrow D \dots$
 - multiple mutations
 - our matrix should reflect this
 - probability of conservation is lower (diagonal elements)
 - all off-diagonal elements will be bigger
- more formally long time p is $p \times p \times p \times ...$
- account for this?
 - take matrix (like blosum) and do matrix multiplication
 - **M** × **M** × **M** × . . .
 - result: a set of matrices
 - PAM10, PAM20, ...
 - Blosum62, blosum80, ...

Are these matrices useful?

- In principle, yes
 - looking for similar proteins use blosum80
 - more remote ? use blosum62
 - •
- in practice ?
- better way to find remote homologues
- huge advance in practical terms
- the problem:
 - you have a sequence that is important what is it related to ?
 - no obvious close evolutionary homologues
- to do
 - try to find more remote (less reliable) homologues

Ziel

- Vergessen Sie den Ziel nicht
 - Für meine Sequenz fand ich keine zuverlässige Homologen
 - Gibt es ein Protein in einen Datenbank, von dem mehr schon bekannt ist ?

iterated searches (psi-blast)

• You search with protein A and find a very remote protein B

but there another protein C

- searching with C
- the original AB relation is believable
- how to automate this?

iterated searches (psi-blast)

- Searching with "A" finds lots of homologues
 - cannot start a search with each

- find all the homologues to A
- build an average sequence (profile)
- from this profile repeat search
- build new average / repeat
- result
 - at each step
 - include reliable homologues
 - eventually $A \rightarrow B$ may be found

iterated searches (psi-blast)

- in practice
- really only one program (+ web page) NCBI blast / psi-blast
- most significant advance in finding remote homologues in a decade

sequence identity / similarity / significance

Significance

- I find a homologue is it evolutionarily related or just noise?
 - probability estimations later
- how important is 10% sequence identity ? 90 % ?
- is 25 % identity in DNA as useful as in a protein?
- First principles DNA
- what would you expect by chance?
- GGATCGA GATTCAGGTTA
- At each position ½ chance of a match
 - average 25 % sequence identity with random DNA
 - wrong

Naïve identity expectation – base usage

- Two problems
 - 1. uneven character frequency
 - 2. gaps

Character frequency

- what if I have a two letter alphabet
 - - average sequence identity 50 %
 - a world with usually two bases sometimes A or T GCGACGCGTCGCGCGTTCGCGC
 - average sequence identity: a bit less than 50 % GCGACACGTCGTGAGTTCTTGC nearly 25 %

Naïve identity expectation – base usage

- as the base usage becomes less even
 - random sequence identity becomes bigger
- how significant ?
 - malaria is about ½ GC (not ½)
 - Streptomyces coelicolor is 72 % GC
 - GC differs between organisms, coding/non-coding regions
- consequence
 - even randomly sampled sequences, will have > 25% sequence identity

Naïve identity expectation - gaps

- ungapped: 2 matches from 9 aligned (22 %) GGATCGCAC GACTGAGGTTA
- one gap: 3 matches 8 aligned (38 %)
 GGATCGCAC
 GACT-GAGGTTA
- more gaps: 4 matches from 6 positions (50 %) GGATCGCAC GACT-G-AGGTTA
- more gaps: 5 matches from 6 positions (83 %)
 GGATC-GCAC
 G-A-CTG-AGGTTA
- the more gaps one allows the higher the identity
- One can make score arbitrarily good

Protein – random matches

- % • 20 amino acids 8.4 ala naïve expectation – 5 % • proteins are not like a 20 character alphabet: 8.3 leu varies between organisms gly 7.8 varies between cell compartments, 1.5 trp soluble, membrane bound... 1.7 CYS
- practical result random sequences, realistic gaps
 - 20 to 25 % identity by chance
 - depends on length..

protein size and identity

- small proteins need 30 % to believe they are related
- big proteins < 20 %, almost certainly related

Summarise problem and steps

Mission

- you have a protein sequence
 - no structure
 - maybe no biochemistry (substrates, binding targets, ..)
- find what you can
 - related proteins of known structure
 - related proteins with known function

•	Is there	easy	98 % similar to protein of known
			function and structure
	• an answer ?		

one set of steps?

hard weak possible similarity to a poorly characterised family

General Idea

- Try easy steps first
 - simple searches first
 - see if enough information is found
 - gradually go to more sensitive methods (slightly more error prone)
- Use the "least speculative" methods first
 - accurate alignments not seeded
 - simple blast searches before iterated ones

What are the expectations?

- for easy sequences
 - very good molecular models
 - no doubt about function
- middle difficult
 - reasonable models
 - enough to guide mutagenesis (which residues can be mutated safely)
- very difficult
 - not even sure what class of proteins or what function
 - may be able to suggest experiments most likely to be useful

Protein Modelling

- Where has all this been leading to?
- Why worry about similarity?

Mission

- You have a protein sequence
 - no structure known
- You would like to build a model for the atomic coordinates

Why do protein modelling?

- real structures (crystallography, NMR) are better
- crystallography
 - cost, crystallisation, phasing
 - think of membrane proteins
- NMR
 - limited in size, solubility
- what are the most important therapeutic targets?
 - enzymes
 - receptors (where are they ?)
- crude models often used for crystallographic phasing

Overall scheme

- for your sequence
 - find related proteins of known structure
 - gives you "template" structure
- sequence alignment
 - your sequence and sequence from template structure
- replace residues
 - where the residues are the same do not do much
 - where they differ, put your residues in place
- fix gaps, insertions
- fix side chains

will this work?

What accuracy? Examples

Tuna / horse myoglobin

• imagine you know the structure of tuna Mb

align the sequences

put residues from horse myoglobin

onto tuna

would make a good guess

• most atoms within 2-3 Å

nasty case

Accuracy – difficult example

```
Alignment to 1v93A
                               Seq ID 11 % (25 / 227) in 268 total including gaps
                               afvsitygam-gstrersvawa-----grigslqlnplahltvaggsrkevaevlhrfv
align sequences
                               rrpsvvylhnaectqcsesvlrafepyidtlildtlsldyhetimaaaqdaaeaaleqav
note seq id = 11 %
                               esqvenllalrqdpprqervfrphpeqfryaaelvalireryqdrvsvqqaaype-qhpe
                               nsphqfiavveqqiptaanqiyqkvanh-tmldicsrilpka--qaviayqtcatfqqvq
what would a model
look like?
                               sesleadlr--hfkakveagldfa-itqlffnnahyfqflerarragigipil-----p
                               aakpnptqakqvndalkhlqvkainiaqcppnpynlvqtivyylknkaapeldslnrptm
                               qimpvtsyrqlrrftevcqasipqpllaklerhqddpkavleiqvehavrqvaelleaqv
                               ffqqtvheqcprlphfdaqefa-----psfeseeark-----qwclyelqc
```

[76]

Accuracy – difficult example

Expectations

	easy		hard
sequence identity	80-90 %		< 15 %
template	no problem	no problem	sometimes wrong
alignment	no errors	some parts wrong	some parts cannot be aligned
gaps / loops	very few		terrible
uses	designing ligands		predicting active sites
			mutagenesis

07/04/2011

Relate to previous lectures

- For your sequence find a template
 - if you cannot find it with blast / fasta will be difficult
- For many sequences many templates equally good
- Why all the talk about psi-blast / related sequences?
 - your protein may not have any close homologues
- template found what next?

alignment for modelling

Easy cases (sequence homologous to template)

- blast alignment OK
- any alignment OK

Harder cases

- why not use the best (slowest) alignment program
- will not do any harm
- costs human time (computer time is insignificant)

insertions and gaps

• dogma – gaps and insertions are less likely in regular secondary structure (α -helices, β -strands)

more likely in "loops"

```
afvsitygam-gstrersvawa-----qriqslglnplahltvagqsrkevaevlhrfv
rrpsvvylhnaectgcsesvlrafepyidtlildtlsldyhetimaaagdaaeaalegav
esgvenllalrgdpprgervfrphpegfryaaelvalirerygdrvsvggaaype-ghpe
nsphgfiavveggiptaangiygkvanh-tmldicsrilpka--qaviaygtcatfggvq
sesleadlr--hfkakveagldfa-itqlffnnahyfgflerarragigipil----p
aakpnptgakgvndalkhlgvkainiagcppnpynlvgtivyylknkaapeldslnrptm
```


insertions and gaps

- imagine white is unknown, but pink is template
- where to put white loop residues?
- fix end points
- join up backbone so as to keep reasonable geometry (bonds, angles)
- OK? Just a guess
- Better?

insertions and gaps

- generate many (10² or 10³) guesses for loop
- calculate energy of each guess

Sidechains

- if my white one is the model
 - where do we put sidechain atoms?
- good strategy
 - look at alignment
 - find unchanged residues
 - take sidechain coordinates
 - rotate other sidechains to fit

	0	:	0	:	1	:	1	:	1	:	1	
	8	:	9	:	0	:	1	:	2	:	3	
	0	:	0	:	0	:	0	:	0	:	0	v :
1	lkssai	eiim	lrsnq	sfsle	dmsws	cggpc	lfkyci	ndvtk	aghtl	ellep	lvkfq	vglkk
1	Lkgaaf	elcq	lrfnt	vfnaet	gtwe	cg	rlsyc	ledta	.ggfqq	lllep	mlkfh	ymlkk
	:	1	:	1	:		1	:	1	:	1	:
	:	3	:	4	:		5	:	6	:	7	:
	:	0	:	0	:		0	:	0	:	0	:

Summarise protein modelling

finding a template	wrong template – rest of procedure is wrong
alignments	usually some residues are not perfect
fixing gaps and insertions	really a guess as to coordinates
placing sidechains	wirkstoff Entwurf – vital
	rough guide to essential residues – may not matter