RNA structure, predictions

Themes

- RNA structure
 - 2D, 3D
 - structure predictions
 - energies
 - kinetics

This handout for today and next week

Structure

Analogy to proteins

- Proteins
 - common belief unique structure for sequence
 - 20 amino acids, many specific interactions
 - hydrophobic, charged, big, small, ...
 - hydrophobic core
 - 8 ×10⁵ structures in databank
- RNA
 - < 10³ structures in databank
 - 4 bases
 - 2 bigger, 2 small
 - less specificity? fewer unique structures

Protein vs RNA

- middle of proteins
 - hydrophobic core
 - soup of insoluble side chains
- middle of RNA
 - specific (Watson-Crick) base pairings
 - other base pairs
 - much more soluble...

RNA – how important is 3D structure?

- primer design, blocking DNA, ..
 - only think of base pairs

- binding of ligands (riboswitches. ribozymes)
 - totally dependent on 3D shape where in space are functional groups

How realistic is 2D?

• 3D versus 2D (1u9s)

2D why of interest?

- 1. computationally tractable
- 2. historic belief that nucleotides are
 - dominated by classic (Watson-Crick) H-bonds

• later – GU wobble pairs

2D why of interest?

- 3. Claim RNA folds hierarchically nearby bases fold first, later overall structure
- evidence not clear
- much contrary evidence in protein world
- plausible in RNA world?
 - RNA double strand helices are believed to be stable
 - contrast with proteins isolated α -helices and β -strands are not stable in solution
- useful?
 - if true, then 2D (H-bond pattern) prediction is really the first step to full structure prediction

Four representations of flat RNA

- 1. conventional
- + on next slide

- 2. Nussinov's
 - write down bases on circle
- arcs (lines) may not cross

Four representations of flat RNA

1. conventional representation

same features in both plots

2. Nussinov's circle

Parentheses

• 3. parentheses – most concise

```
..((((((....)))))....((((....))))
```

- can be directly translated to picture
- easily parsed by machine (not people)

Dot plots

4. Dot plots

- same features in both plots
 - look for long helix 57-97, bulges in long helix
 - probabilities (upper right) remember for later

made with mfold server

nomenclature / features

- branch junction
- hairpin loop
- bulge

• interior loop / mismatch

2D – properties and limitations

- declare crossing base pairs illegal
 - think of parentheses
 - discussed later

- just the identity of the partners
- 2 or 3 types of interaction
 - GC, AU, GU

• what is the best structure for a sequence?

Predicting secondary structure

• how many structures are possible for n bases? $cn^{3/2}d^n$

for some constants c and $d \approx 1.8$

- exponential growth
- problem can be solved
 - restriction on allowed structures
 - clever order of possibilities

Best 2D structure (secondary)

- scoring scheme:
 - each base pair scores 1 (more complicated later)
- Problem
 - some set of base pairs exists maximises score
 - crossing base pairs not allowed
- our approach
 - what happens if we consider all hairpins?
 - what happens if we allow hairpins to split in two pieces?

Philosophy

- structure is
 - best set of hairpins (loops)
 - with bulges
 - loops within loops
- start by looking at scores one could have
 - try extending each hairpin

hairpins

- start by looking for best possible hairpin
- idea
 - if we know the structure of the inner loop
 - we can work out the next
 - if we know the black parts
 - we can decide what to do with the red
 i and j

Best possible hairpin

- black part is given
 - what are the possibilities for i and j?

- maybe *i* should pair with *j*
- maybe there is a better *j* later
- what possibilities must one consider?

Optimal hairpins

- extend the hairpin
- put a gap / bulge in the left
- put a gap / bulge on the right

Optimal hairpins

- order of steps
 - start by finding best local loops/pairs
 - move outwards

- consequence
 - base pairs will never cross important

Optimal hairpins

- How expensive ?
 - look at all *i* positions (*n* of them)
 - look at all j neighbours (n of them) $_{S(i+1,j)}$
 - $O(n^2)$ not finished yet
- What have we done?
 - best organisation of hairpins
 - with best position of bulges and gaps
- Cannot yet split a chain into multiple hairpins

Splitting hairpins

- Check every position *k*
 - split and check the hairpin to left and right
 - check the score with every value of k
- result?
 - for each possible position see if a split / bifurcation helps
 - at each position we have best possible hairpin
- final result?
 - best possible set of base pairs
- how expensive?

cost of predicting structure..

- for each i
 - test each *j*
 - try each *k*
- $n \times n \times n = O(n^3)$
- not really so simple
 - very fancy order of steps (dynamic programming method)
- very severe limitation (pseudoknots later)
- In principle...
 - for a given sequence, can find the best arrangement bases
- needs more sophistication

Scoring schemes

- till now count base pairs, but
- we know
 - GC 3 H-bonds
 - AU 2 H-bonds
 - GU 2 H-bonds
- compare a structure with
 - $3 \times GC$ versus $4 \times AU$
 - 9 H-bonds versus 8 H-bonds
- change the scoring scheme improvement..
 - count H-bonds
- still not enough

- First approximation
 - each H-bond is independent of neighbours
 - all GC (or AU or GU) pairs are the same
- Other factors
 - loops and stacking..
- Consider unpaired bases
 - counted for zero before
 - compare loop of 3 / 5 / ...
- do these bases
 - interact with each other? solvent?
 - energy is definitely $\neq 0$

Unpaired bases

- one basepair bulge
 - distorts helix / costs energy at backbone
- two / three basepairs ?

How to treat

- like gap penalties in protein alignments
- when considering *i*, *j* pairs, add in penalties for bulges

How much?

later

- Assumption: each basepair is independent
- S(i,j) = base-pair + S(i+1, j-1)
- valid?
 - consider all the interacting planes
 - partial charges, van der Waals surfaces

- goal
 - incorporate most important effects
 - do not add too many parameters ... nearest neighbour model

Nearest neighbour model

- Previously we added
 - GC + UA + AU + ...
- Now
 - (GU/CA) + (UA/AU) +...

- terminal loop costs 5.4 kcal mol⁻¹
- where do numbers come from ?

Nearest neighbour model

- parameters..
 - model is not perfect a (GU/CA) pair will depend on its environment
 - best guesses
 - make small helices, measure melting temperatures of related sequences
 - ACTGACTG vs ACTAACTG tells you about TG vs TA
 - make loops of different sizes and measure melting temperatures

Score summary

simplest	count base pairs
medium	count H-bonds
complicated	nearest neighbour model pairs of pairs, loops, ends,

• how accurate?

Reliability

- how accurate?
 - too many factors, sequence environment, possible tertiary effects
 - maybe 5 10 % errors
- how good are predictions?
 - maybe 50 75 % of predicted base pairs are correct
- why so bad ?

Reliability

- Remember nature of RNA
 - only 4 base types
- think of an "A"
 - wants to pair with a U
 - there are many many U's
- think of any base
 - many possible good partners
- consider whole sequence
 - there may be many structures which are almost as good (slightly sub-optimal)
- importance of sub-optimal solutions...

Reliability

- for some sequence
 - there are 999 wrong answers with good energies
 - + 1 correct answer
 - add in error to all the values and pick the most negative
 - probably will not be the correct one
- can they be improved?
 - work with sets of aligned sequences
- consequence..
 - much effort in finding non-optimal answers
 - remember probability plots from earlier?

Probabilities

- lower left best structure
- upper right probabilities of base-pairs

Probabilities

- Have you met the Boltzmann relation?
- probability p_i of being in state i

$$p_i \propto e^{-E_{i/kT}}$$

T temperature

E energy

k Boltzmann constant

- *i* here is some base pair
- how is it calculated ? (not for exam)

best base pairing

Problems

- Given some unpaired bases, what would you expect?
 - solvate?
 - form more H-bonds?
 - pack bases against each other?
 - cannot (practically) be predicted
 - order of steps in base-pairing methods
 - (definition of recursions)
 - structure of loops
 - assumption that energy is the sum of **enclosed** pairs
- General name ... pseudoknots
 - why ?

Pseudoknots

- pseudo-knot not a knot
 - why the name?
- topologically like a knot

pseudoknots

kissing hairpins

hairpin loop bulge

pseudoknots

Frequency of pseudoknots?

- a few % of all H-bonds
- significant?
 - most structures will have some
 - classic RNA example

pseudoknot summary

- fast algorithms cannot find pseudoknots
 - in order to go fast, the algorithms work in a special order
 - some base pairs come in "wrong" order
- more general problem
 - we have ignored tertiary interactions..

Tertiary interactions

- pseudoknots usually refer to classic H-bonding
- tertiary interactions could come in other forms
 - bases stacking
 - miscellaneous H-bonds
 - non-specific van der Waals
- most larger RNA's have many tertiary interactions
 - relatively compact

tertiary interactions from crystal, flattened

Pessimist view – all useless

- realistic, but nasty problems
- application can we look for riboswitches ?
 - sequence where there is two different but good solutions
- realistic pictures

Horror 1

- 2g9c early riboswitch
 - 3D view flat?

- one conformation crystallised
- could you predict the other?
- could you predict this structure?
 - look at the number of strong interactions – not simple pairs

Horror 2

same problem as before

3D predictions

- not practical
 - molecular dynamics simulations?
 - not a friendly system highly charged
 - too many atoms
 - interactions with metal ions
 - some claims of success

Kinetics..

- Imagine you can predict 2D structures
- do you win?
- two possible scenarios
 - kinetic trapping
 - slow formation

Kinetic trapping

- term from protein world
- what is the friendliest energy surface?
- wherever the molecule is
 - it will probably go to energetic minimum

energy

less friendly landscape

Energy landscapes

energy

• if barrier is too high, best conformation may never be reached

How real is the problem

- consider base of type G
 - there are many C's he could pair with
 - only one is correct
 - there are lots of false (local) minima on the energy landscape

Landscapes / kinetics

- can one predict these problems?
 - not with methods so far
- try with simulation methods
 - Monte Carlo / time-based methods

- start with unfolded molecule
- use classic methods to get a set of low energy predictions
- simulate folding steps
 - measure amount of each good conformation with time..

Example calculation

- conformation 1 forms rapidly
- conformation 2 slowly forms
 - conformation 1 disappears

Implications

- what if RNA is degraded?
 - molecule disappears before it finds best conformation
 - "kinetically preferred" conformations may be more relevant than best energy

summary

- 2D (secondary structure calculations)
 - fast
 - limits structures one can predict (no pseudoknots)
 - energies not perfect
 - errors in predictions
 - may be enough for some applications where basepairing dominates
- tertiary structure very important (binding of ligands)
- you may lose anyway (kinetics)