Lattice Models

classify models by detail

detail	type	properties
high	quantum mechanical atomistic	very physical some approximations, mostly physical terms
low	coarse grain	crude functions, approximations, often non-physical terms

Another important property

• continuous vs discrete

Andrew Torda, June 2012, Struktur & Simulation 11/06/2012 [1]

Continuous versus discrete

Continuous models

- coordinates (and other properties) take on any value
- typical properties
 - can take derivative with respect to coordinates
 - energy defined almost everywhere

Discrete

- coordinates (maybe more) are limited to certain values
 - think real/float versus integers
- examples
 - weather forecasts, oceanography, wind tunnels
 - finite element methods (engineering)
 - statistical mechanics (Ising model)

Aim

- Simulations so far
 - long simulations necessary to sample conformational space
 - to get average properties

$$A_{obs} = \frac{1}{N_{obs}} \sum_{i=1}^{N_{obs}} A_i \quad or \quad A_{obs} = \frac{1}{b-a} \int_a^b A_i dt$$

- with drastic simplifications either
 - 1. increase N_{obs} or
 - 2. visit all possible (exhaustive enumeration) ..

Exhaustive enumeration

- real world properties average over all states
- probabilities depend on all states
- previously, we had "*N*_{obs}"

$$p_i = \frac{e^{\frac{-E_i}{kT}}}{Z}$$
 and $Z = \sum_i e^{\frac{-E_i}{kT}}$

in a simple system, one can visit all *i* states
 = exhaustive enumeration

Discrete proteins

How do we make proteins discrete ?

- most common
 - lattices, grids, (Gitter)
- sometimes picture of real world
 - more common a very simple model to analyse some property

Putting a protein on a lattice

• Put down a protein and find nearest grid point

Lattices, errors

What would the error be on a lattice ?

- for 1 Å, should be $\frac{1}{2}$ Å
- can be made arbitrarily small
- what if two continuous residues map to one point ?
- not the only (or best) criterion
 - first, what would our energy look like ?

Energy functions

Two philosophies

1. mimic approximation to real energies

• earlier picture

2. simpler approach

- continuous space for realistic simulations, real proteins
- use simple model for some topic of interest

$$U = \sum_{i < j} c_{ij} \Delta(\overrightarrow{r_i}, \overrightarrow{r_j})$$

- c_{ij} is some parameterisation constant for types *i* and *j*
- switching function

$$\Delta(\overrightarrow{r_i}, \overrightarrow{r_j}) = \begin{cases} 1 & \text{if } i - j \neq 1 \text{ and } |\overrightarrow{r_i} - \overrightarrow{r_j}| = 1 \\ 0 & \text{otherwise} \end{cases}$$

Why simple energy functions ?

Simple functions (contact terms)

- some residues like to interact with each other
- will be happiest when the most favourable contacts are made (like a real protein)
- can reproduce very specific structures
 - interactions can be anything you want
- gross properties like hydrophobic packing

Reduced alphabets

Typical question – we want to guess

- how does folding time depend on size ?
- how much hydrophobic area is exposed for some sequence ?

Do we need 20 amino acids ?

- general principle, consider 5 or 6 residue types
 - charged (asp, glu)
 - charged + (lys, arg)
 - polar (thr, ser, gln, asn)
 - hydrophobic aromatic (tyr, phe, his, trp)
 - hydrophobic aliphatic (ala, leu, val, ile, met, cys)
 - special (gly, pro)

Reduced alphabets – HP model

- history of protein structure
 - most proteins have a hydrophobic core
 - can this explain much of protein structure ?
- minimalist version
 - two residue types (hydrophobic / polar, HP)
- Say that protein structure is dominated by hydrophobic collapse
 - two residue types are really enough for many calculations

Reduced dimensions

Do I care about specific real proteins?

not always

Is there a simple system which looks like a protein ?

- two dimensional protein
- very very simple protein ?
- 2-D, HP model

Different types of lattice

• simple cubic lattice

- body centred cubic
- face centred cubic
- triangular 2D / 3D
 most important difference ?
 - score functions count contacts
 - how many neighbours does each hav

Why are lattice calculations so fast?

- normal code

 for each particle
 for each other particle
 is it a neighbour ? calculate energy O(n²)
- lattice code

for each particle

set up list of neighbour cells (often 6, 8, ..) look if neighbour is occupied O(n)

- what if we have a very realistic system ?
 - all distances can be precalculated
 - 1 unit is 3.8 Å or 0.5 Å or ...
 - no more square roots $x^{\frac{1}{2}}$, cutoffs, ...

Calculations

We have some machinery, what kinds of calculations?

- simulation (brief now, more later)
- others
- Simulating on a lattice
- we do not have gradients of our energy terms (not much help if we do)
- we do know the energy of a configuration
- calls for Monte Carlo

Lattice simulations

Monte Carlo

- apply normal conventions
- take a step
- calculate energy
 - accept / reject according to Metropolis criterion
- what would our moves look like ?
 - anything reasonable
 - from one starting point, should (eventually) be able to reach any other
 - typical moves ..

What can we get from simulating

- Take a system usually < 100 residues
- start from
 - random configurations
 - extended configurations
 - misfolded configurations
- run for 10⁶ or as many steps as you can afford
 - does a simulation always find a similar minimum energy ?
 - what is the energy spread of misfolded structures ?
 - are there many similar low energy structures ?
 - are there a large number of different low energy structures ?

Results from simulations

From a 3D HP model, typical structure

- features ?
 - hydrophobic residues in middle
- Compare with MD simulation
- biggest simulation in literature
 - 36 residues
 - months of cpu time
 - does not find global minimum

More on simulations later...

Unique possibilities

Big problem with atomistic systems

- for any system more than about handful of residues
 - nearly impossible to visit all conformations
- for more than about 10 residues (maybe 15 or 20)
 - little evidence that the global minimum can be found

Lattices

- exhaustive enumeration (visit all possibilities)
 - configuration
 - sequence
- location of optimal structure

Exhaustive enumeration of conformations

Why bother ?

- define almost all the stat mech properties of a system
- remember partition function
- summation over all conformations
 We can find things like

$$Z = \sum_{i} e^{\frac{-E_i}{kT}}$$

- free energies
- distribution of energies

How many configurations are there ? 2D HP model

- 16 residues in 2D is no problem
- in 3D, about 3 × 3 × 3 feasible

length	num configurations
14	110 188
16	802 075

Exhaustive enumeration of sequences

20 amino acids

- too hard
- 5 or 6 amino acids
 - quite realistic, but difficult
- HP model?
 - 16 residues is easy (65 536 sequences)
 - with this machinery, what can we do ?

Example question

- folding
 - what are driving forces ? (hydrophobic collapse, HP)
 - what is first to form (local or long range ?)
 - how smooth is the folding pathway
 - more later
- evolution
 - more later
- do all protein sequences fold ?
- sequence vs structure space ?

Do all proteins fold ?

If I take a random amino acid sequence, is it a protein?

- experiment ? less than 1 in 100 fold
- test by MD simulation ?
 - cannot even fold one protein

II

- Lattice models
- well studied problem
 Definition
- important property
 - folding vs non-folding

 $conformations \rightarrow$

conformations→

Folding versus non-folding

Non-folding in a lattice model

- find a sequence
 - visit all conformations
 - rank energies
- how many different conformations have the lowest energy ?
- how many have energy within kT (could be visited at T) ?
 Answers ?
- most random sequences do not fold
- intuitive example
 - a very very hydrophobic sequence is happy as long as it is compact
 - there are many ways to make it compact
- agrees with experiment

Sequence versus structure space

From earlier lectures

- different sequences may fold to nearly same structure
 - large number of different sequences known for
 - globins, β -sandwiches, ...
- different structures ? usually have unrelated sequences
 Can we see this from MD ? No.

From lattice

- for each configuration
 - try every sequence and see if it is an energy minimum
- see how many sequences like each structure

Favourite structures

Some structures are the minimum energy for many sequences

- in a 3×3×3 HP model, there are 100's of sequences which like this structure
- some structures are popular, some much less so
- in principle, totally agrees with nature
 - exact numbers have no meaning

Problems and limitation of lattices

- statistical mechanics are completely valid, but...
- loss of detail
 - resolution is obvious
 - interpreting in physical (or structural) requires faith
 - example of α -helix in 2D
 - whole structural properties may be lost
 - chirality ? chirality of a helix
- discretisation
 - energies and configurations are discrete
 - if a property depends on number of states, results will be model-dependent

Relating lattices to the real world

- simple models and reduced alphabets
 - only trends are believable
 - some trends can be tested
 - how do results change with 2 versus 3 amino acids ?
- for detailed models,
 - dependence on lattice type and resolution

Artefacts

Susceptibility to artefacts ? Examples

- dependence on alphabet size
 - how popular is a structure may depend on alphabet size
 - in simple alphabets and energies, there are less foldable structure
 - more complicated models make lowest energy more unique
- properties depend on kind of lattice
 - extreme example !
 - a triangular lattice has more foldable structures

Are we finished with lattices ?