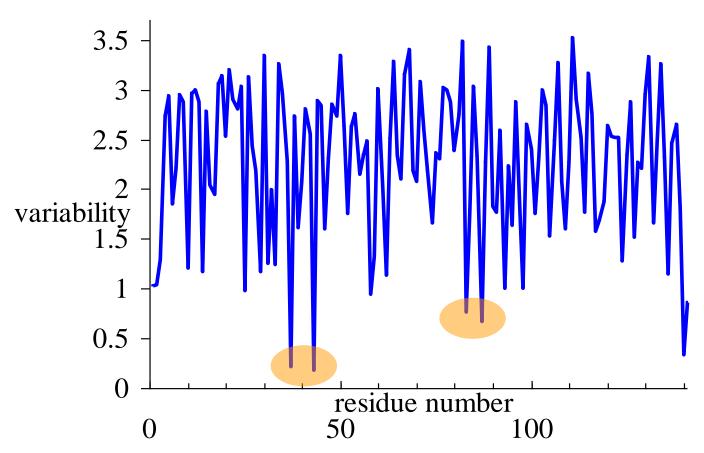
Multiple sequence alignments similarity without sequence similarity

Andrew Torda, Bioinformatics, Sommersemester 2012

Bis Jetzt

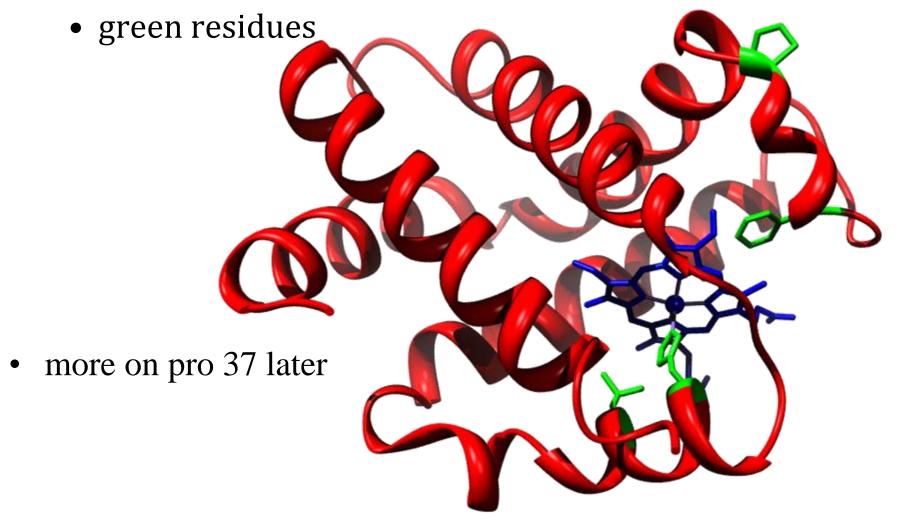
- Man hat eine Sequenz (Protein oder Nukleotid)
- Man will so viel wie möglich finden, um
 - Struktur vorherzusagen
 - Funktion vorherzusagen
- Jetzt Alignments, Evolution & Funktion


Multiple alignments

- what does a set of sequences look like?
- data for a haemoglobin
- summarise this data

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG mostly for proteins placktnykaawgkygahageygaealermflsfpttktyfphfdlshgsaqykghg VLSPADKTNVKAAWGKVGAHAGEYGAEALEKMFLSFPTTKTYFPHFDLSHGSAQVKGHG LSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTHVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEAWERMFLSFPTTKTYFPHFDLSHGSAOVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSAADKTNVKAAWSKVGGHAGEYGAEALERMFLGFPTTKTYFPHFDLSHGSAQVKAHG VLSADDKANIKAAWGKIGGHGAEYGAEALERMFCSFPTTKTYFPHFDVSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQG VLSPADKTNVKAAWGKVGAHAGEYGAEAFERMFLSFPTTKTYFPHFDLSHGSAQVKGQA VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKSNVKATWDKIGSHAGEYGGEALERTFASFPTTKTYFPHFDLSPGSAOVKAHG VLSPADKSNVKAAWGKVGGHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG MLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTGTYFPHFDLSHGSAQVKGHG VLSSADKNNVKACWGKIGSHAGEYGAEALERTFCSFPTTKTYFPHFDLSHGSAQVQAHG VLSAADKSNVKAAWGKVGGNAGAYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VLSANDKSNVKAAWGKVGNHAPEYGAEALERMFLSFPTTKTYFPHFDLSHGSSOVKAHG VLSPADKSNVKAAWGKVGGHAGDYGAEALERMFLSFPTTKTYFPHFDLSHGSAOVKGHG

Conservation / variability


look at residues 37, 43, 83 and 87

- how do we get these and what does it mean?
- what does it mean for this protein?

Conserved residues

proximity to haem group

Beliefs in multiple sequence alignments

Similar proteins found in many organisms

- rarely identical
- where they are conserved will be connected with function
- how much they vary will reflect evolution (phylogeny)
 How many homologues might you have?
- many
 - some DNA replication proteins almost every form of life
 - some glycolysis proteins from bacteria to man
 - ..
- few
 - some exotic viral proteins
 - some messengers exclusively in human biochemistry
 - ...

Many sequences - rigorous alignment

- two sequence alignment
 - optimal path through $n \times m$ matrix
- three sequence alignment
 - optimal path through $n \times m \times p$ matrix
- four sequence alignment
 - ...
- m sequence alignment of n residues.... $O(n^m)$
- excuse to use lots of approximations
 - no guarantee of perfect answer
- reasonable starting point
 - begin with pairs of proteins

Scoring schemes

$$S_{a,b} = \sum_{i=1}^{N_{res}} match(s_{a,i}, s_{b,i})$$

- In pairwise problem vlspadksnvkagwgqvgahagdygaeaiermylsfpstktyfphtdishgsaqvkghg mlspadktnvkaawgkvgahageygaealermflsfpttktyfphfdlshgsaqvkghg
 - Sum over where N_{res} is sequence length
 - $match(s_{a,i}, s_{b,i})$ is the match/mismatch score of sequence a and b at position i
- invent a distance between two sequences like

$$d_{a,b} = 1 - \frac{S_{a,b}}{100 \cdot N_{res}}$$
 or $d_{a,b} = \frac{1}{S_{a,b}}$

• distance measure – mainly to see which sequences are most similar to each other

Scoring schemes for a multiple alignment

In the best alignment

- 1 is aligned to 2, 3, ...
- 2 to 3,4, ...

- 1 VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG
- 2 VITP-EQSNVKAAWGKVGAHAGEYGAEALEQMFLSYPTTKTYFP-FDLSHGSAQIKGHG
- 3 MLSPGDKTQVQAGFGRVGAHAG--GAEALDRMFLSFPTTKSFFPYFELTHGSAQVKGHG
- 4 VLSPAEKTNIKAAWGKVGAHAGEYGAEALEKMF-SYPSTKTYFPHFDISHATAQ-KGHG
- 5 -VTPGDKTNLQAGW-KIGAHAGEYGAEALDRMFLSFPTTK-YFPHYNLSHGSAQVKGHG
- 6 VLSPAEKTNVKAAWGRVGAHAGDYGAEALERMFLSFPSTQTYFPHFDLS-GSAQVQAHA
 - VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

Mission: for N_{seq} sequences

• S_{ab} : alignment score sequences a and b

$$score = \sum_{b \neq a}^{N_{seq}} \sum_{a=1}^{N_{seq}} S_{a,b}$$

- not quite possible
 - if I move sequences 4 and 5, may make a mess of 5 and 2

Aligning average sequences

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VITPAEKTNVKAAWGKVGAHAGEYGAEALEQMFLSYPTTKTYFPHFDLSHGSAOIKGHG

and

IITPGDKTNVKAAFGKVGAHGGEYGAEALDRMFISFPSTKTYYPHFDLSHASAQVKAHG VITPAEQTNIKGAWGQIGAHAGDYAADALEQMFLSYPTSKTYFPYFDLTHGSAQIKGHG VITPAEKTQVKAAWGKVGGHAGEYGAEAIEQMFLTYPTTQTYFPHFELSHGTAQIKGHG

- at each position
 - use some kind of average in scoring
 - if a column has 2×D and 1×E score
 - score as 2/3 D + 1/3 E
- later.. call the average of S1 and S2: av(S1, S2)

Summarise ingredients

- pairwise scores + distances
- ability to align little groups of sequences

Progressive alignments

- known as guide tree / progressive method
- steps
 - build a distance matrix
 - build a guide tree
 - build up overall alignment in pieces

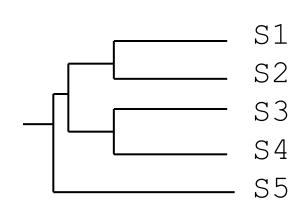
Progressive alignment - tree

S1

S2

S3

S4


S5

S1 ATCTCGAGAS2 ATCCGAGAS3 ATGTCGACGAS4 ATGTCGACAGA

Compute pairwise alignments, calculate the distance matrix

	S 5	A'1''1'	CAACGA	
ı				
.11	_			
.20	.30	_		
.27	.36	.09	_	
.30	.33	.23	.27	_
S1	S2	S3	S 4	S5

calculate guide tree

Multiple alignment from guide tree

- gaps at early stages remain
- problems..
- S1/S2 and S3/S4 good
 - no guarantee of S1/S4 or S2/S3

• av(S1,S2) is average of S1 and S2

align S3 with S4

align S1 with S2

S1

S2

S3 ATGTCGAC-GA

S4 ATGTCGACAGA

align av(S1,S2) with av(S3,S4)

ATCTCGAGA

ATC-CGAGA

S1 ATCTCGA--GA

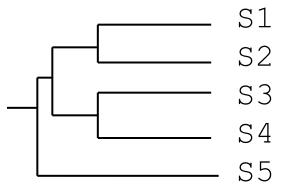
S2 ATC-CGA--GA

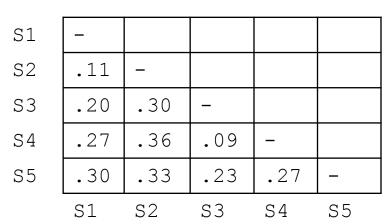
S3 ATGTCGAC-GA

S4 ATGTCGACAGA

align av(S1,S2,S3,S4) with S5

S1 ATCTCGA--GA

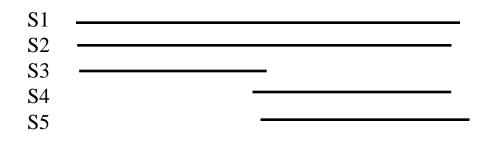

S2 ATC-CGA--GA


S3 ATGTCGAC-GA

S4 ATGTCGACAGA

S5 AT-TCAAC-GA

Problems and variations



What order should we join?

- pairs are easy (S1+S2) and (S3+S4)
- which next?

Real breakdown

- S1 and S2 are multi-domain proteins
 - S3 is not really related to S4 or S5
 - distance matrix elements are rubbish

Given an alignment

How reliable / believable?

- set of very related proteins (an enzyme from 100 mammals)
 - no problem
- diverse proteins (an enzyme 100 organisms, bacteria to man)
 - maybe lots of little errors
- can break completely (domain example)

Is the tree a "phylogeny"? A reflection of evolution?

more later

Measuring conservation / entropy

- Gibbs entropy
 - how much disorder do I have ? $S = -k \sum_{i=1}^{N_{states}} p_i \ln p_i$
 - in how many states may I find the system?
- Our question
 - look at a column how much disorder is there?

VLSPADKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGVITP-EQSNVKAAWGKVGAFAGEYGAEAIEQMFLSYPTTKTYFP-FDLSHGSAQIKGHGMLSPGDKTQVQAGFGRVGAFAG--GAEAVDRMFLSFPTTKSFFPYFELTHGSAQVKGHGVLSPAEKTNIKAAWGKVGAFAGEYGAEAAEKMF-SYPSTKTYFPHFDLSHATAQ-KGHG-VTPGDKTNLQAGW-KIGAFAGEYGAEALDRMFLSFPTTK-YFPHFDLSHGSAQVKGHGVLSPAEKTNVKAAWGRVGAFAGDYGAEAGERMFLSFPSTQTYFPHFDLS-GSAQVQAHAVLSPDDKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

no disorder much disorder

• Calculate an "entropy" for each column

Entropy

- We can forget k (Boltzmann just scaling) $S = -\sum_{i=1}^{N_{states}} p_i \ln p_i$
- We have a protein
 - 20 possible states
- What if a residue is always conserved?
 - $S = \ln(1) = 0$ (no entropy)
- What if all residues are equally likely?
- $p_i = 1/20$

$$S = -\sum_{i=1}^{20} \frac{1}{20} \ln \frac{1}{20} = -20 \cdot \frac{1}{20} \ln \frac{1}{20}$$

$$\approx 3$$

my toy alignment...

Entropy

- first column is boring
- second

•
$$p_{\rm D} = 5/7$$

•
$$p_{\rm E} = 1/7$$

•
$$p_{\rm N} = 1/7$$

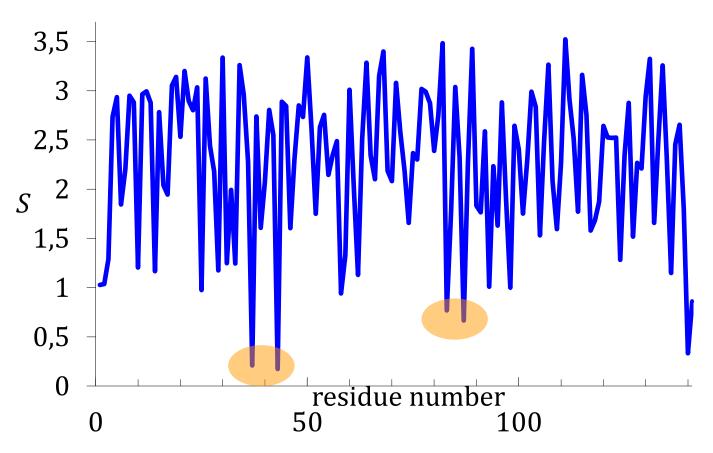
VLSPADKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHGVITP-EQSNVKAAWGKVGAFAGEYGAEAIEQMFLSYPTTKTYFP-FDLSHGSAQIKGHGMLSPGDKTQVQAGFGRVGAFAG--GAEAVDRMFLSFPTTKSFFPYFELTHGSAQVKGHGVLSPAEKTNIKAAWGKVGAFAGEYGAEAAEKMF-SYPSTKTYFPHFDLSHATAQ-KGHG-VTPGDKTNLQAGW-KIGAFAGEYGAEALDRMFLSFPTTK-YFPHYNLSHGSAQVKGHGVLSPAEKTNVKAAWGRVGAFAGDYGAEAGERMFLSFPSTQTYFPHFDLS-GSAQVQAHAVLSPDDKTNVKAAWGKVGAFAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

$$S = -\left(\frac{5}{7}\ln\frac{5}{7} + \frac{1}{7}\ln\frac{1}{7} + \frac{1}{7}\ln\frac{1}{7}\right)$$

\$\approx 0.8\$

example from start of this topic

Entropy from DNA

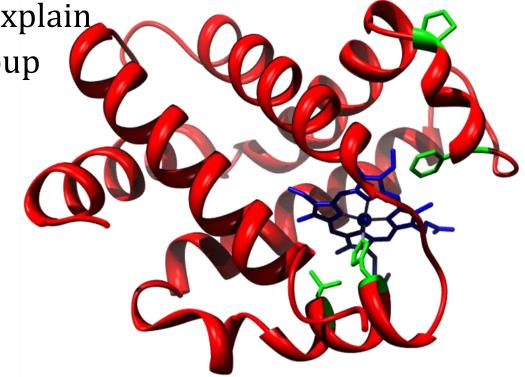

- exactly as for proteins
- will numbers be larger or smaller?
 - max possible entropy

$$S = -4\left(\frac{1}{4}\ln\frac{1}{4}\right)$$
$$= -\ln\frac{1}{4}$$

$$\approx 1.4$$

Haemoglobin conservation

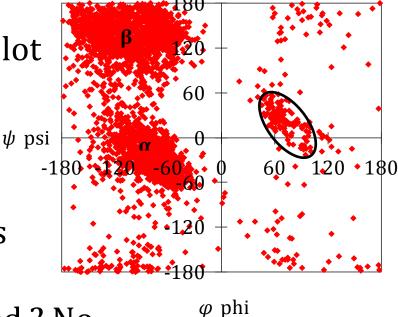
look at residues 37, 43, 83 and 87


- 4 residues (maybe more) stand out as conserved
 - why?

Conserved residues in haemoglobin

3 of the sites are easy to explain

• interact with haem group


- Look at fourth site
 - proline
 - end of a helix

- what is special about proline?
 - no Hbond donor
- here if it mutates, maybe haemoglobin does not fold

Conservation for structure

- some residues have very special structural roles
 - proline not an H-bond donor
 - often end of a helix
 - glycine can visit part of $\varphi \psi$ plot
 - found in some turns
- are all gly residues so important?
 - NO they occur in many places sometimes in turns
- are all pro residues very conserved? No

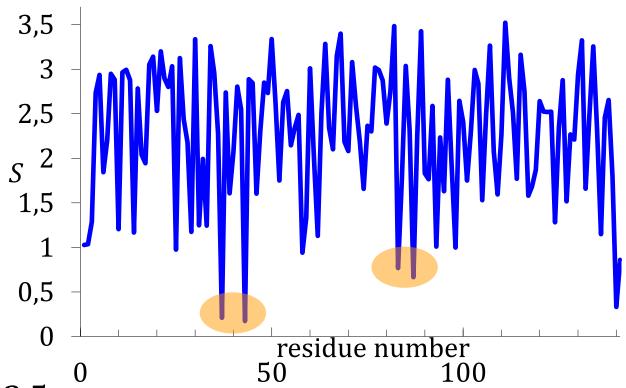
Conservation for function

- in a serine protease
 - always a "catalytic serine"
 - can it mutate? Not often
- in haemoglobin residues necessary for binding haem
 - can they mutate? rarely
 - changes properties of haemoglobin (bad news)
- dogma
 - residues in active site will be more conserved than other sites

Important summary

- conservation may reflect
 - important function
 - structural role
- mutagenesis / chemistry
 - what residue may I change to allow binding to a solid substrate? (for biosensor/immobilized enzyme?)
 - I want to try error prone PCR to select for new enzyme activity which sites might I start with (active site)?
- drug design example
 - target is an essential protein (basic metabolism, DNA synthesis, protein synthesis..)
 - is there some set of sequence features common to pathogen, different to mammalian protein?

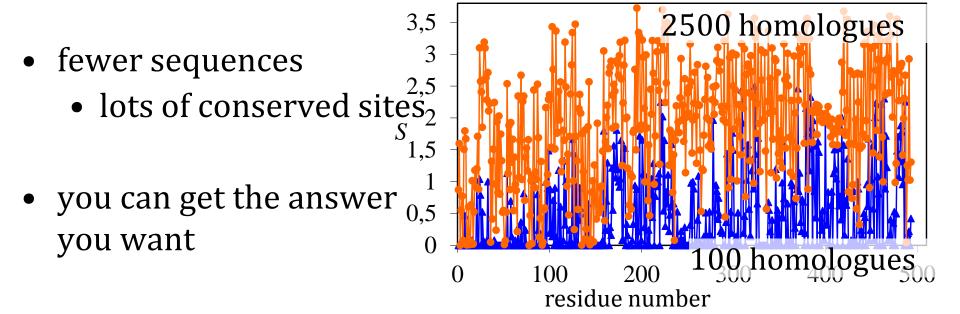
Evolution - do not trust conservation


Imagine: two possible systems for some important enzyme

- 1. active site fits to essential biochemistry
 - any mutation you lose
 - you see active site residues as conserved in a conservation plot
- 2. maybe enzyme is not absolutely perfect
 - some mutations kill you
 - some mutations OK
 - site does not appear perfectly conserved

If you have the choice, where would you evolve to?

- 1. very fragile
- 2. likely to survive mutations


Conservation – how meaningful?

- Earlier Folien...
- values from 0 to 3.5
- what if I used more homologues?

Conservation – how meaningful?

- example sequence (1ab4, DNA gyrase)
- find 100 close homologues (mostly > 80% similarity)
 - calculate conservation
- find 2 500 close homologues (mostly > 50 % similarity) calculate conservation

Phylogeny / Evolution

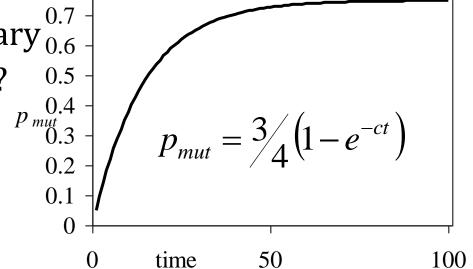
Purely academic? For fun? Not always

- possibly useful in explaining disease propagation
 - where did HIV come from ?
 - where did the flu pandemics come from?
 - virus infects banana crop where did it come from ?
- previously we had a "guide tree"
 - did (S1,S2) and (S3,S4) share an ancestor but not S5?
 - not so good
- branch lengths do not reflect evolutionary time
- there may be other similar trees which could be evolutionary paths

S2

S3

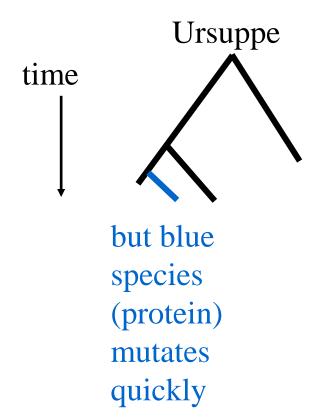
S4

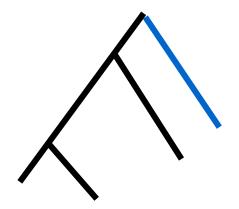

S5

Evolutionary time

- compare two DNA sequences see
 - 1 mutation (represents time *t*)
 - 2 mutations (time 2t)
 - 3 mutations (time 3t)...
 - No!
- After some evolution
 - A \rightarrow C \rightarrow G two events (although looks like A \rightarrow G)
 - A \rightarrow C \rightarrow G \rightarrow C \rightarrow A looks like zero mutations
- If I have infinite time
 - all bases / residues equally likely
 - $p_{mut} = 3/4 = 0.75$ (DNA) or $p_{mut} = 19/20$ (protein)

Mutation probability


- time units are rather arbitrary $_{0.6}^{0.7}$
- how would I estimate time? (for DNA)
- $t \propto -\ln\left(1 \frac{4}{3}p_{mut}\right)$
- p_{mut} ? count $\frac{n_{mut}}{n_{res}}$



- scaling of *t* not so important (relative time)
- for short times, p_{mut} changes fast
 - for small *t*, distances will be more reliable
 - as will be alignments
- is this enough for phylogeny?
 - what about reliability?

Problems in phylogeny

- not all sites mutate equally quickly
- not all species mutate equally quickly

 blue appears to have branched off earlier

Problems estimating time

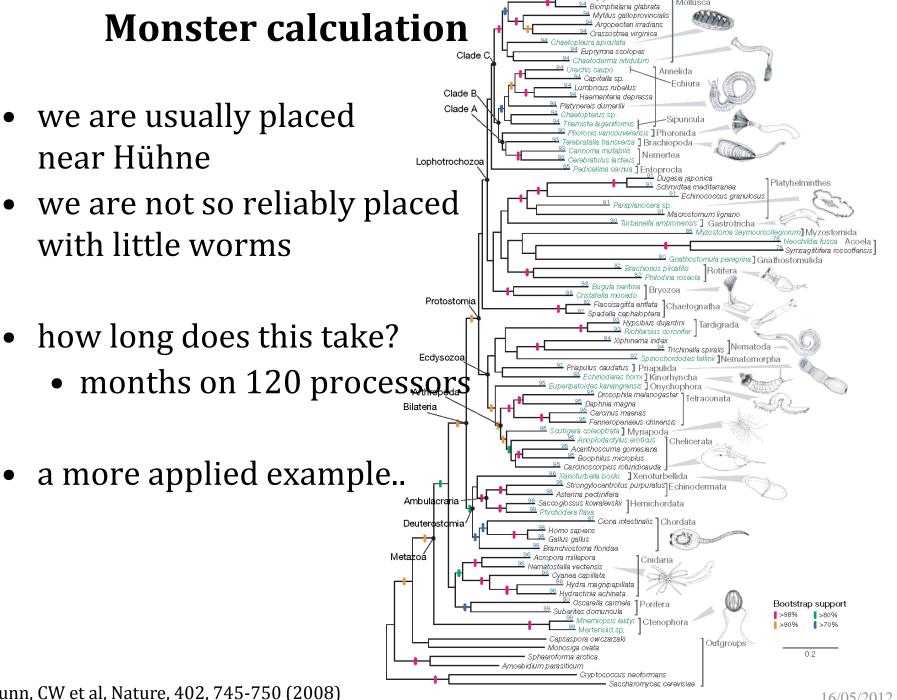
- 1. mutation rates vary wildly
 - changing environments pH, temperature,...
- 2. imagine time *t* is such that p_{mut} = 0.25
 - we have random events
 - sometimes you see 23% mutation, sometimes 28%
- time estimates will never be accurate
- maybe we cannot find the correct tree
 - can we roughly estimate reliability?

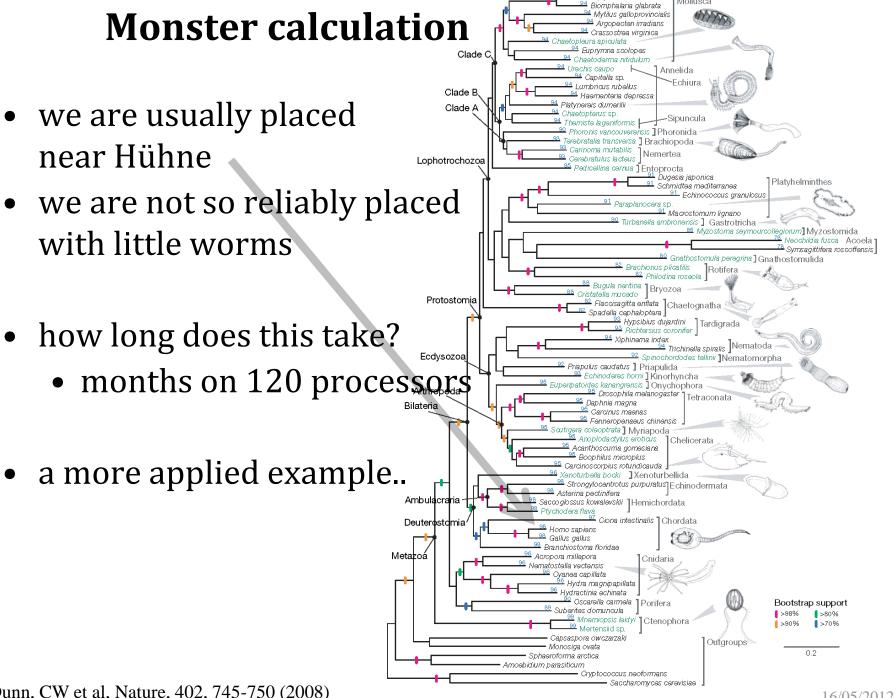
Reliability

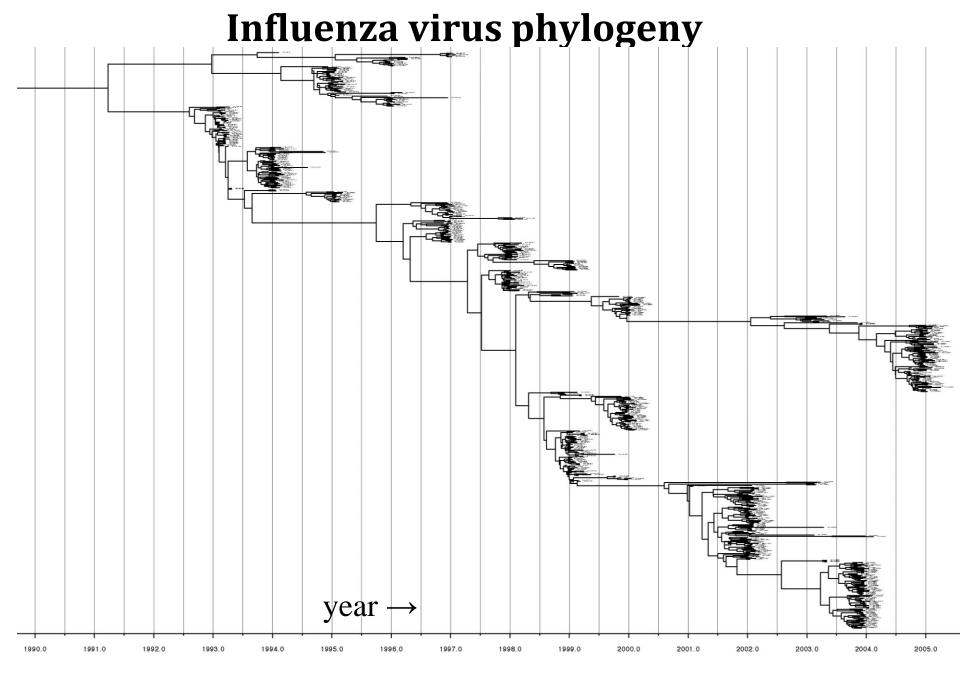
think of first alignment

VLSPADKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG VITP-EQSNVKAAWGKVGAHAGEYGAEAIEQMFLSYPTTKTYFP-FDLSHGSAQIKGHG MLSPGDKTQVQAGFGRVGAHAG--GAEAVDRMFLSFPTTKSFFPYFELTHGSAQVKGHG VLSPAEKTNIKAAWGKVGAHAGEYGAEAAEKMF-SYPSTKTYFPHFDISHATAQ-KGHG -VTPGDKTNLQAGW-KIGAHAGEYGAEALDRMFLSFPTTK-YFPHYNLSHGSAQVKGHG VLSPAEKTNVKAAWGRVGAHAGDYGAEAGERMFLSFPSTQTYFPHFDLS-GSAQVQAHA VLSPDDKTNVKAAWGKVGAHAGEYGAEALERMFLSFPTTKTYFPHFDLSHGSAQVKGHG

- what would happen if you deleted a column?
- if the data is robust /reliable
 - not much
- if the tree is very fragile /sensitive
 - tree will change
- better...


Reliability


- repeat 10^2 to 10^3 times
 - delete 5 to 10 % of columns
 - copy random columns so as to have original size
 - recalculate tree
- how often did you see each branch



Monster example

- generate lots of trees
- for each subtree
 - see how often it is present
- example from cover of nature

Rambaut, A., .. Holmes, C. The genomic.. influenza A virus, Nature 452, 1-6, 2008

Summary

- multiple sequence alignment conservation
 - find important residues (function or structure)
 - can quantify conservation
- relations between most similar proteins are most reliable
- best tree is never found
 - too difficult algorithmically
 - lots of errors evolution is a random process
- rough idea of reliability
- quick tree possible for hundreds of sequences
- more complicated methods only practical for smaller numbers of sequences