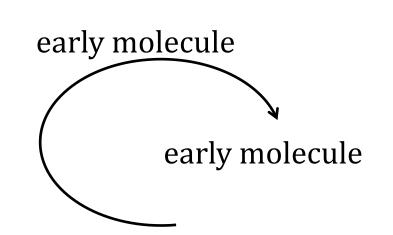
The RNA world

Definitions of life

Evidence for RNA world

Problems with RNA world Alternatives (maybe there was no RNA world)


Today versus history

Picture today

- implies simultaneous development/of
 - proteins (copying)
 - nucleotides (information storage)

Suggestion

- one molecule
 - self copying
 - possibilities
 - 1. protein like
 - 2. nucleotide like
 - 3. something else
- This is templated
- later remove this requirement

proteins (enzymes)

nucleotides

(DNA or RNA)

What is life ? Practical – not philosphical

Practical – not philosophical

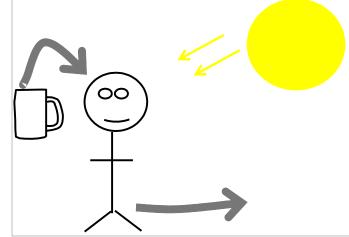
- people, trees, ...
- bacteria
- viruses?
- infectious DNA / RNA?

Some concepts

- life consumes energy better formulated
- life avoids equilibrium, needs energy, consumes entropy

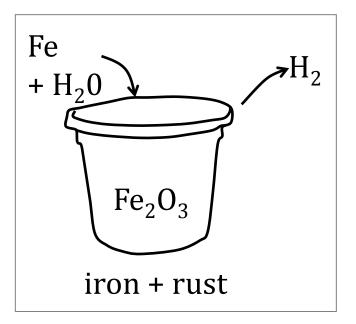
Equilibrium

Reaction A + B \leftrightarrow C + D $\Delta G = RT \ln \frac{[C][D]}{[A][B]}$


Decay A \leftrightarrow B + C, then $\Delta G = RT \ln \frac{[B][C]}{[A]}$

In a closed system, if $\ln \frac{[B][C]}{[A]} = 0$ you are dead

Consequence


• life is in "steady state"

Steady state systems

Input of energy

- maintenance of order
- grows
- catalytic and specific
 sugars
 waste
 nutrients
 bacteria in a bucket

- bacteria and rust
 - grow, eat nutrients, catalyse their own copying

Rust

Why is rust not life

- low information
- no ability to change and evolve

information / entropy

Entropy is easy to define

- N_{states} equal probability $S = k \ln N_{states}$
- or with different probabilities $S = -k \sum_{i=1}^{N_{states}} p_i \ln p_i$
- life has information, but what is it ?

Information

- pretend a genome is a string amongst possible genomes
- *E. coli* ?
 ≈ 5 million base pairs (5×10⁶) ... 4^{5×10⁶} ≈ 10³⁰⁰⁰⁰⁰⁰
- how many states could e. coli's genome have ?
 - of these possibilities, very few are used
 - "information" per genome is big
- genome of rust ? information in rust ?
 - alphabet is 1 ? length is 1 ?

Claim

• evolution is information increase via selection

Complexity

Smallest genomes

• viruses – few proteins – parasitic

Free living?

• a few hundred proteins

Is there a minimum complexity for life?

• no answer, but rust is very simple

Life

Rust can

• catalyse the production of rust, does not adapt

"life" can

- general copying machinery
- copy sequence₁ or sequence₂
- templated copying

This flexibility necessary for evolution

Summary of life

- not at equilibrium / consuming energy
- catalytic
- creating information
- copying with possibility of change / selection

• minimum complexity ? no evidence yet

RNA world properties

- replication of RNA (directed / templated)
- Watson-Crick base pairing (not at start)
- no protein catalysis
 - did it exist ?

- 1. both phenotype and genotype
- 2. information
- 3. roles of nucleotides
- 4. Selex
- 5. biosynthesis
- 6. ribosome

In turn..

You have to carry information between generations and perform chemistry..

1. Information

- proteins rarely code for other proteins
- 2. Both phenotype and genotype
- simplicity (parsimony) one type of molecule

3. Roles of nucleotides

All AMP/ADP/ATP chemistry (or GMP)

• basically nucleotides

Lots of classic biochemistry

- CoA (AMP-phosphopantetheine)
- NAD (nicotinamide adenine dinucleotide)

4. Selex (topic in biochem lectures, later this course) select for desired activity from random molecules

- from a soup of RNA molecules, one can select desired activities
- activities were there
- start of life just a big selection experiment


5. Biosynthesis

- much machinery devoted to RNA biosynthesis many enzymatic steps
- DNA is just a modification afterwards
- looks as if RNA is the older molecule

6. ribosome

- incredibly conserved
- part of ribosome near active site
- remove all the RNA
- the nearest protein to active site is > 18 Å
- the fundamental operation of making proteins^{20.4}
 from a template –
 carried out by a ribozyme

10e

ribozyme

without

protein

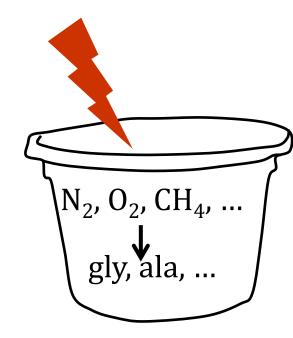
10/04/2013

[18]

RNA World – requirements

Source of basic requirements

- ribose
- bases (A, C, G, U + more T, I, X, ...)

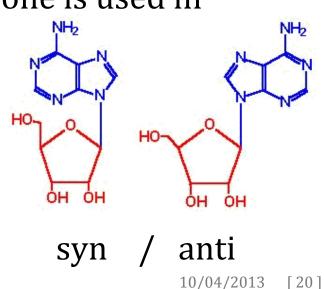

Vague source

• Miller experiments from 1950's

Can one make nucleosides ? nucleotides ?

• polynucleotides?

Lots of problems...


Specificity - sugars

Make sugar in lab

- condensation from smaller molecules
- result?
 - mixture of 5 member sugars (ribose, pyranose, ...)
 - ribose is not dominant

Enantiomers, isomers, ..

- details of linkages different, but only one is used in modern world
 - syn / anti, L / D

How to make nucleotides ?

N-sugar + xxx-PO₄ →N-sugar-PO₄ (+H₂0 + xxx)

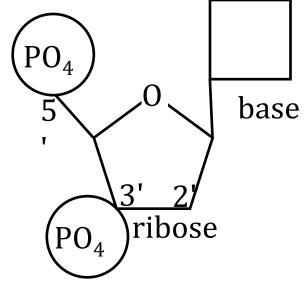
ribozymes have been made for related reactions

- quite plausible
 - no really good candidates yet

Abiotic ?

- many examples of catalysis exist
 - Pb²⁺, BO₃³⁻, ...

Joining monomers (problems)


Modern chemistry always 5' to 3'

Nucleotides (NMP)

- 3 reactive groups
 - 5' PO₄, 3' OH, 2' OH

Soup of 5' NMPs and condense

- mixture of
 - 5', 5' pyrophosphate
 - 2', 5' PO₄ diester
 - 3', 5' desired diester

RNA replicase

- One model we have one replicase
- Basic requirement replicase should
 - act on itself (or similar copies)
 - should produce
 - itself or
 - complementary copies
- Length constraints
- define fidelity q = probability that one residue is correctly added
- probability of copying chain length n correctly = qⁿ
- no mistakes no evolution

q	п	perfect copies
0.9	4	0.66
0.9	10	0.35
0.95	10	0.65
0.95	20	0.36

Replicase Quality

- Is there are magic *q* ?
- Must we wait for some chemicals with correct *q* ?
- No ! Evolution helps

Joyce / Orgel – first replicase

How likely are we to take a random soup of nucleotides

- ribozyme of 40 bases
- *q* = 0.9
 - not very likely, but if
- a replicase starts
 - copies related molecules better than unrelated
- if it copies better / faster it will be selected for and evolve
- could this happen ?
 - copying by other catalysts using RNA as template

Alternative Genetic Systems

Must we start with RNA?

If not, bias is towards a system

- can pair specifically with RNA sequences
 - XYZW pairs to ACGU so we can have template directed RNA synthesis
- should form an open (helical) structure Examples
- replace ribose with pyranose (p-RNA)
 - stable, helical

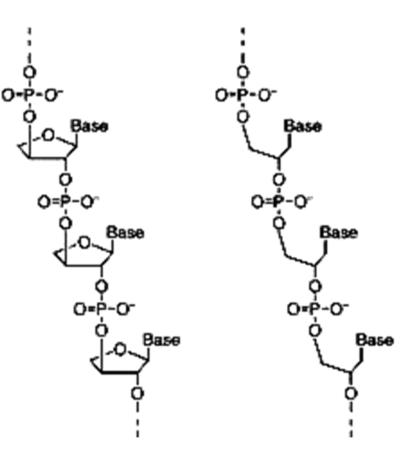
• does NOT form paired dimers with RNA

from Joyce, GF & Orgel, LE in The RNA World, (eds Gesteland, RF, Cech, TR, Atkins GF) Cold Spring Harbor Lab Press 2006 10/04/2013 Base

[26]

different sugars RNA

Use threose (left) TNA


- forms stable double helix
- threose may be easier to make

Use glycol (right) GNA

- also forms double helices
- Other examples possible

Main point:

• There may have been something before RNA

Complete change of philosophy

maybe we do not need an RNA world

Do we need this general templating ?

So far – search for general replicase, polymerase

• Can one build a living system from less general components ?

Examples

- peptides made without ribosomes
 - antamanide
 - glutathione
- the "information" is stored in enzyme structures

reference: Kauffman, SA, The Origins of Order, Oxford University Press, NY 1993

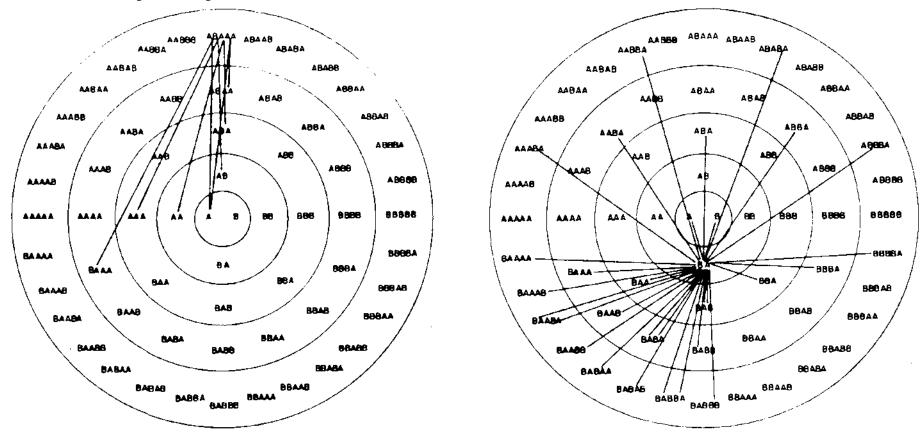
Requirements for RNA/DNA/Protein world

- 1. RNA can catalyse formation and cleavage of internucleotide bonds
- 2. abiotic formation of the monomers
- 3. solutions must be concentrated (small volume)
- 4. anabolic flux (making larger polymers)
- catalytic closure formation of each member of set is catalysed by some other member

We could apply these rules to proteins or nucleotides

- change nature of monomer
- consider the first four problems

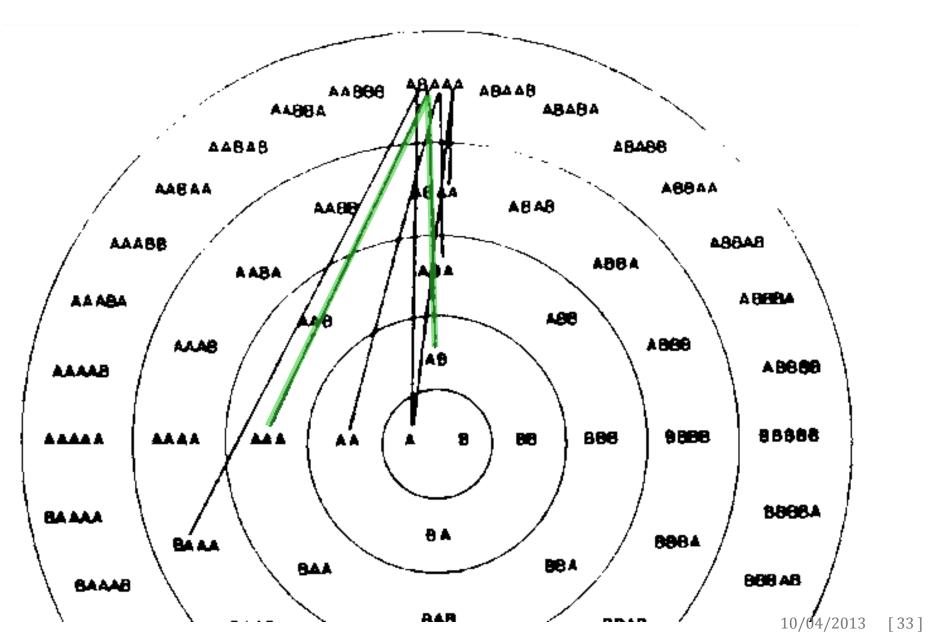
Some prerequisites are easy


- 1. proteolytic enzymes or ribozymes
- tolerate a very imperfect soup of molecules, complex peptides or mixed 3', 5' + 2', 5' nucleotides
- 3. confinement drops, minerals, agglomerations
- 4. most reactions are A + B \leftrightarrow AB + H₂0
 - removing water drives equilibrium to right
- 5. catalytic closure not by simple templating
 - radical philosophy exam questions, take notes

Catalytic closure

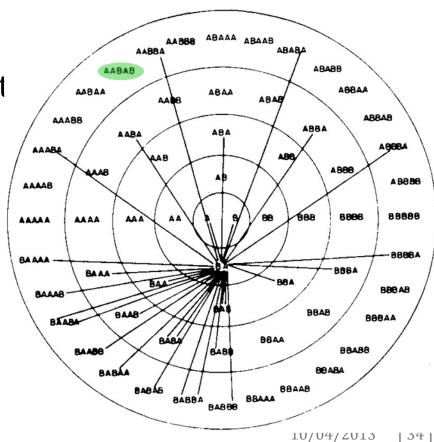
Imagine a soup of polymers with conversions

• cleavage or ligation ABCDE \leftrightarrow ABC + DE


How many ways can we form a 5-mer? or 2-mer?

Kauffman, SA, The Origins of Order, Oxford University Press, NY 1993

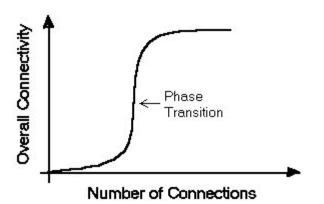
^{10/04/2013 [32]}

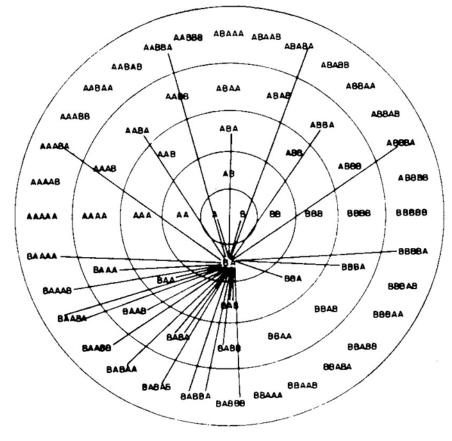

AB + AAA form ABAAA

Catalytic subset

Within set of polymers some are enzymatic for joining / breaking units

- for RNA $4 \times 4 = 16$ X-Y types
- pick a polymer
- with probability *p* pick a react it catalyses
- imagine green sequence catalyses all AB bonds
 - leads to huge number of edges
- go to next sequence, maybe assign a reaction




Catalytic subset

How many real enzymes and edges do we need?

• I do not have to be able to synthesise everything

• Behaviour with random graphs ?

edges and connectivity

- Standard results
- as edges \approx nodes/2
 - most components are connected.

Edges 15 Nodes 20

When edges≈nodes

• cycles appear

Those nodes in cycles

can be synthesised using only other components in the cycle

0

B

(15)

• probability of cycles is near 1

Edges 10 Nodes 20

(5)

2

(15)

Edges Nodes = 20 ((13)

0

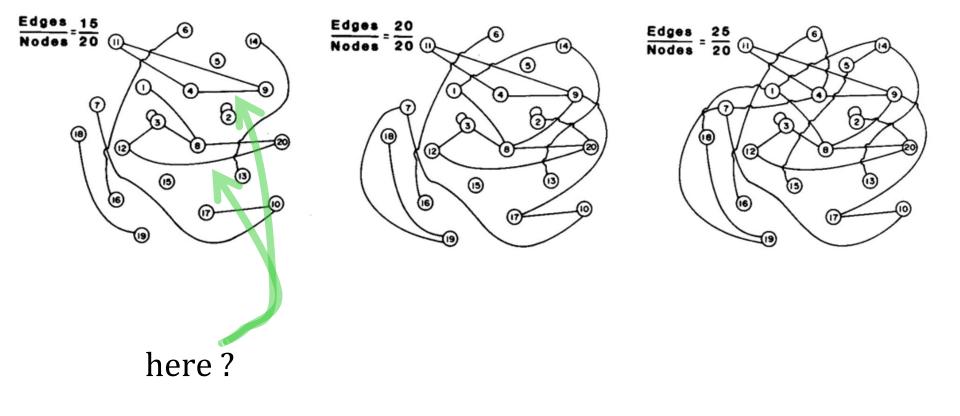
(15)

6

(15)

(19)

(16)


Edges Nodes = 25 20 (i) (14)

2

(13)

Connectivity

- As soon as I have a cycle..
 - Self-reproducing system... Life ?

Catalytic cycles

Gross simplifications

- no specificity
- one enzyme does all XY bonds regardless of context
- all rates the same...

Reasoning valid for 4 bases (RNA) or 20 residues (protein)

Auto-catalytic model

Without real "information" system

- self reproducing
- minimum complexity
- may have errors, tolerance of errors = evolution
- life may emerge suddenly
- order appears suddenly (Entropy disappears .. OK ?)

Autocatalytic model consequence

Anti-evolution

- what are the chances of molecules coming together to form a 200 residue protein ?
- what are the chances of a hurricane blowing bricks and building a house ?

This model

- the hurricane does not have to re-assemble a house
- any self-sustaining network will do
- our world is just one outcome
- whatever chemistry is most successful...

Experimental evidence

- not like ribosomes (difficult to explain without an RNA world)
- artificial systems.. example

RNA example of cooperating cycles

- ribozyme with four regions, ABCD
- four autocatalytic reactions
 - A+BCD \rightarrow ABCD
 - AB+CD \rightarrow ABCD
 - ABC+D \rightarrow ABCD
 - ABC+D \rightarrow ABCD
- ABCD is a better catalyst than the parts
- recognition / pairing site can be varied
- possibility of cooperation

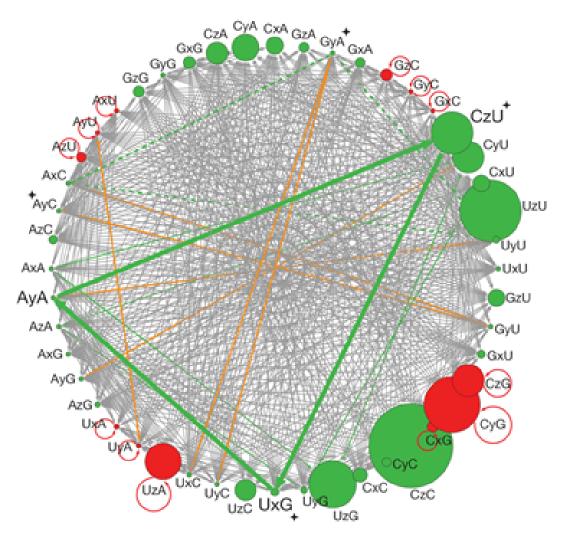
•
$$A_1 + B_1 C_1 D_1 \xrightarrow[A_2 B_2 C_2 D_2]{} A_1 B_1 C_1 D_1$$

RNA example of cooperating cycles

Throw all ingredients into bucket

• A, AB, ABC, BCD, CD, D × sequence variants

48 possible products (comes from joining and sequence)


Results ?

48 products

size: how much of product after 8 hr

red: autocatalysts

green: cooperators

Claim:

cooperators are winners Proof ? No – nice example of feasibility

Vaidya, N Manapat, ML. Chen, IA, Xulvi-Brunet, IR, Hayden, EJ, Lehman, N, Nature, 2012, 491, 72

For an Exam

- characteristics of life
- evidence for RNA world
- problems with RNA world
- auto-catalytic models

Summary

- life, entropy, information
- evolution, errors and tolerance of errors
- RNA world
 - ribosome strong evidence
 - search for (possibly indirect) template directed replication
 - difficult to specify exact reactions producing
 - activated monomers
 - polymers
- search for simple template-directed replication may not be necessary
- self reproducing system may spontaneously form