Monte Carlo and MD simulations

Andrew Torda, April 2013 strukt und sim

What we observe in any system?

averages of observables (pressure, energy, density)
 Given enough time system will visit all states

time

random hopping

My observable A

$$A_{obs} = \frac{1}{b-a} \int_{a}^{b} A_{t} dt$$

$$A_{obs} = \frac{1}{N_{obs}} \sum_{i=1}^{N_{obs}} A_i$$

Time and space averages

If we believe
$$A_{obs} = \frac{1}{N_{obs}} \sum_{i=1}^{N_{obs}} A_i$$

then

$$A_{obs} = \sum_{j}^{states} p_{j} A_{j}$$

$$\equiv \langle A \rangle$$

- $\langle A \rangle$ is ensemble average and usually \bar{A} is time average
- if sample with correct probability, we can find A_{obs}
- order of visiting states does not matter

Monte Carlo

How to calculate π with random numbers

$$\frac{points_{red}}{points_{square}} = \frac{1/_{4}\pi r^{2}}{\text{area in square}}$$

$$\pi = 4 \frac{points_{red}}{points_{square}}$$

$$n_{square}$$
++
if $((x^2+y^2) < 1)$
 n_{red} ++
print $4 \frac{n_{red}}{n_{square}}$

Generating distributions / Monte Carlo

Generating points in a circle? (generating function)

$$p_{in_circle} = \begin{cases} 1 & x^2 + y^2 \le 1 \\ 0 & x^2 + y^2 > 1 \end{cases}$$

 we could work out the area of a circle (integrate) by picking random numbers

What does Monte Carlo simulation mean?

- generating points according to some distribution to find an average or integral
- what is our distribution in physical systems?
 - Boltzmann distribution

Monte Carlo and Boltzmann distributions

Boltzmann probability distribution

$$p_i = \frac{e^{\frac{-E_i}{kT}}}{\sum_j e^{\frac{-E_j}{kT}}}$$
 often written as $p_i = \frac{e^{\frac{-E_i}{kT}}}{Z}$

- if we could generate this distribution, we could reproduce most properties of a system
- leads to a scheme (not possible)

correct, but not practical scheme

```
while (not happy)
   generate configuration \mathbf{r}_i (conformation of protein, ...)
                                    (number between 0 and 1)
   calculate p_i
   generate random number x
                                                                        p_{i} = \frac{e^{\frac{-E_{i}}{kT}}}{\sum_{i} e^{\frac{-E_{j}}{kT}}}
   if (x < p_i)
         accept \mathbf{r}_i
   else
         reject \mathbf{r}_i
```

- result? a set of \mathbf{r}_i with Boltzmann distribution
- problem? we do not know $\sum_{j} e^{\frac{-E_{j}}{kT}}$

a better scheme

We cannot generate points from
$$p_i = \frac{e^{\frac{-E_i}{kT}}}{\sum_j e^{\frac{-E_j}{kT}}}$$

What if we have two configurations?

$$\frac{p_i}{p_j} = \frac{e^{\frac{-E_i}{kT}}}{Z} \frac{Z}{e^{\frac{-E_j}{kT}}}$$

$$=\frac{e^{E_j-E_i}}{kT}$$

$$=e^{\frac{-\Delta E}{kT}}$$

a better scheme

$$\frac{p_i}{p_j} = e^{\frac{-\Delta E}{kT}}$$

If we have one configuration to start

- we can work out the relative probability of a second
- convenient convention
 - going from old \rightarrow new $\Delta E < 0$
 - $E_{new} E_{old} < 0$ energy is better / more negative

Metropolis Monte Carlo

• generating a distribution

$$\frac{p_i}{p_j} = e^{\frac{-\Delta E}{kT}}$$

- if $\Delta E < 0$, new is likely (more than 1)
- if $\Delta E > 0$, old is p_{new} is possible
- generate starting configuration \mathbf{r}_{o}

```
while (not happy)  \text{generate } \mathbf{r}_{new}   \text{calculate } E_{new} \text{ and } \Delta E   \text{if } \Delta E < 0   \text{set } \mathbf{r}_o \text{ to } \mathbf{r}_{new}   \text{else}   \text{x = rand } [0:1]   \text{if} \left( x \leq e^{-\Delta E_{kT}} \right)
```

set \mathbf{r}_o to \mathbf{r}_{new}

- what if ΔE slightly > 0?
 - 0.000000001
- what if $\Delta E = 10^6$?
- small uphill moves are OK
- bigger moves are less likely

Properties of Monte Carlo

The set of \mathbf{r}_o is a valid distribution (ensemble)

• for some property *A*

$$A_{obs} = \langle A \rangle = \frac{1}{N_{visited}} \sum_{i}^{N_{visited}} A_i$$

• A could be density, structural property, E, ...

• only works for one temperature *T*

- look at picture.. could I calculate entropy / free energy?
 - for simple systems

Equilibrium

MC results (observables / averages)

- only for system at equilibrium
- Simulations generate system at equilibrium

What happens for a system out of equilibrium?

- Toy system with 3 states
- for some *T*, at equilibrium

•
$$p_1 = \frac{5}{8}$$
 $p_2 = \frac{1}{4}$ $p_3 = \frac{1}{8}$

• if I have 80 copies of the system, most are in state₁

Reaching equilibrium

System wants
$$p_1 = \frac{5}{8}$$
 $p_2 = \frac{1}{4}$ $p_3 = \frac{1}{8}$ $50:20:10$

- start it with 5:70:5
- all moves 2→1 are accepted (large flux)
- the flux from $1 \rightarrow 2$
 - 1→ 2 moves are not always accepted
 - there are less particles in state₁
- moving to equilibrium depends on
 - population
 - probability

Detailed balance

For any two states (state_i and state_j)

Flow $i \rightarrow j$ must equal $j \rightarrow i$

otherwise?

Flow $i \rightarrow j$ depends on

- population N_i
- probability $\pi(i \rightarrow j)$

Detailed balance

$$N_i \pi(i \rightarrow j) = N_j \pi(j \rightarrow i)$$

• detailed balance must apply for any pair *i*, *j*

all textbooks use π for probability here

Ergodic

Assumptions

- I can do integrals because
 - I will visit every state
 - I can calculate p_i for all states
- I will visit every state

alternatively

For any i, j

- $\pi(i \rightarrow j) > 0$
- may require a finite number of steps: $i \rightarrow k \rightarrow m \rightarrow j$
- must be satisfied

Moves

version 1

- decide on r_{max}
- pick a particle at random
- pick random Δx , Δy , Δz
 - $0 < \Delta a < r_{max}$
- apply move
- accept / reject move

version 2

- decide on smaller r_{max}
- foreach particle
 - pick random Δx , Δy , Δz
 - $0 < \Delta a < r_{max}$
- apply move
- accept / reject

Moves

- both kinds of move OK
- note
 - "accept / reject"
- more generally,
 - how big is r_{max} ?
 - big
 - system moves faster
 - more moves rejected
- what if my particles are not spheres?
 - rotations also necessary
- time has no meaning

Bonded systems

Protein (lipid, polymer, ..)

Random Δx ?

- nearly all will stretch a bond
 - high energy : rejected move
- only feasible method
 - random rotations $\Delta\theta$

In general

- most kinds of simple moves OK
- must maintain detailed balance, ergodicity
- question of efficiency
 - high rejection rate means lots of wasted calculations

More moves - N particles

$$\frac{p_{new}}{p_{old}} = e^{-\Delta E/kT}$$

I have defined temperature

- and $N_{particles}$ and V
- called NVT simulation

Vould I have varied something else?

- what if I tried to put particles in / take out?
 - sometimes energy ↑sometimes↓
- system will fluctuate around $\langle N \rangle$
- this would not be NVT

Periodic Boundary Conditions

Technical point relevant to gases, proteins in water...

Behaves like an infinite system

Infinite interactions?

Neighbours of blue particle

- only use the nearer
- not really an infinite system
- volume defined by box

Problems with Monte Carlo

```
while (not happy)

propose move

accept / reject move
```

Small steps?

system moves slowly: long time to visit all states

Big steps?

- calculate energy
- reject move
 - no progress, wastes time

Dense Systems and Monte Carlo

Random moves?

most moves rejected

Dense systems?

- liquids
- proteins, polymers, ...

Solutions

- cleverer MC moves (later)
- MD

Why do molecular dynamics simulations?

Real world

- box of gas, molecule in space, protein molecule in water
- atoms hit each other,
 - share energy, box expands/contracts, ...
 - soon reaches equilibrium
 - visits low energies (often), high energies (less often)
 - visits entropically favoured regions
- we stick in a thermometer
- measure density, ...

What have the atoms done?

- feel forces and move
- an MD simulation just copies this

What do we expect? Molecular Dynamics

one particle in a well

Unlike MC, particles have kinetic energy E_{kin}

Kinetic and potential energy

Our system is isolated (no work done)

E tot never changes

conserves energy (no work done on system)

$$E_{tot} = E_{pot} + E_{kin}$$

For one particle $E_{tot} = E_{pot} + E_{kin} = \text{constant}$

Lots of particles

Particles hitting each other

- exchanging energy
- Total system
- conserves energy

One particle?

• per particle energy no longer conserved (may gain or lose)

Many particles

- distribution of velocities
- distribution of potential energies

Boltzmann distribution in real world

One version of real world (N, V, T)

- constant number of particles, volume, temperature
- today $E = E_{kin} + E_{pot}$
- *Z* is partition function
- earlier $Z = \sum_{i} e^{\frac{-\Delta E_i}{kT}}$

But now we have kinetic energy $E_{kin}(\boldsymbol{p})$

- where $\boldsymbol{p} = m\dot{\boldsymbol{x}}$
 - potential energy $E_{pot}(\mathbf{r})$
- if we write in continuous form ...

Partition function for MD

Usually write $H(\mathbf{p}, \mathbf{r}) = E_{kin}(\mathbf{p}) + E_{pot}(\mathbf{r})$

• "Hamiltonian"

All the states are defined by all possible momenta and coordinates

• sum over these: $Z(N, V, T) \propto \int d\mathbf{p} \int d\mathbf{r} \, e^{\frac{-H(p,r)}{kT}}$

often see $\mathcal{H}(\mathbf{p}, \mathbf{r})$ or $\mathcal{H}(\mathbf{\Gamma})$

MD Method

For any particle we can calculate forces

Newtons law

F = ma often better written $\vec{\ddot{x}} = \vec{F}m^{-1}$

If we know acceleration

- we can get velocity
 from velocity
- can get coordinates

averaging, sampling,

Starting system

Initial coordinates

- protein model
- protein from protein data bank (PDB)
- protein + proposed ligand
- box of liquid

Do initial coordinates matter?

- in principle: no infinitely long simulation visits all configurations, reaches equilibrium
- in practice: yes
 - bad examples
 - no simulation is long enough to predict protein conformation
 - take water configuration and run at ice temperature

Initial velocities

First consider temperature – reflects kinetic energy

$$\left\langle \frac{1}{2} m v_{\alpha}^2 \right\rangle = \frac{1}{2} kT$$

where v_{α}^2 could be v_x , v_y , v_z leads to definition

$$T(t) = \sum_{i=1}^{N} \frac{m_i v_i^2(t)}{k N_f}$$

- where N_f is number degrees of freedom $\approx 3N$
- we could use this to get initial velocities $\langle v_{\alpha}^2 \rangle = \frac{kT}{m}$

Initial velocities

Would one $\langle v^2 \rangle$ be OK?

- not very good
 - E_{kin} correlated with E_{pot}

Either

- use more sophisticated distribution
- do not worry
 - system will go to equilibrium
 - velocities will reach sensible values

Getting new velocities / coordinates

constant acceleration

$$x_t = x_0 + vt + \frac{1}{2}at^2$$

or

$$x_t = x_0 + \dot{x} + \frac{1}{2}\ddot{x}t^2$$

OK for constant acceleration

try to use formula to predict future time

big ∆t / step big error

small Δt / step small error slow

Fundamental problem with integration

- We want to use big Δt (speed)
- We must use small Δt (accuracy)

All Δt will give us some error

numerical integration is never perfect

How small is Δt ?

- depends on fastest frequency / steepest walls in energy
 - usually bonds
- for proteins at room temperature
 - $\Delta t \approx 1$ fs (femtosecond 10^{-15} s)
- high temperature Δt should be smaller

Practical integrators

remove velocity – slightly more sophisticated

Noise and heating

General rule

- noise heats the system
- formally difficult to prove
- $E_{kin} = \frac{1}{2} mv^2$
 - no kinetic energy

 $igchtharpoonup \mathcal{L}$ E_{kin} due to noise

‡extra velocity

Noise-free Simulation

Energy conservation : Absolute rule $E_{pot} = f(\mathbf{r})$

- no time component
- invariant under translation, rotation

When violated?

• (r) does not change, but E_{pot} changes: E_{tot} changes

Noise Sources

Integrator

- coordinates do not match velocity E_{kin} wrong: $(E_{kin} + E_{pot}) \neq \text{constant}$

energy not conserved

Numerical noise

- $E_{pot} = f(\mathbf{r})$
- initial coordinates (r) quoted to 3 decimal places
- really less accurate

Cutoffs

- within cutoff rotation restricted
- outside cutoff rotation suddenly free

Result

heating

Equilibrium

Remember MC story

system not at equilibrium? eventually equilibrates

MD

- start in high energy E_{pot}
- E_{pot} converted to E_{kin}

Some high energy conformation

- relaxes
- E_{pot} converted to E_{kin}

MD system will not

- really find low energy
- known temperature

MD in a closed system

An isolated molecule should not lose energy

A repeated box will not lose energy

- Formally system is
 - NVE (constant $N_{particles}$, volume, energy)

0 0000	0 0 0 0 0 0 0	0 0 0 0 0 0
0 0 0 0 0 0 0		0 0 0 0 0 0
0 0 0 0 0 0 0	0 0 0 0 0 0	0 0 0 0 0 0

Problems

- we want to set the temperature of the system
- we may have noise / heat creating energy

Cure

thermostat

Bath

imagine infinite bath at desired temperature

- heat will flow in or out
- at equilibrium no flow of heat
 - maybe removal of noise/heat

How to implement? Many ways

Occasionally:

- 1. introduce a fake particle desired temperature / collide
- 2. pick a particle at random / give average *v* for temperature
- 3. Easy method –weak coupling...

Weak Coupling

Remember temperature* $E_{kin} = \sum_{i=1}^{N} \frac{1}{2} m_i v_i^2 = \frac{3}{2} NkT$

Heat leaves system depending on how wrong temperature is

$$\frac{dT(t)}{dt} = \frac{T_0 - T(t)}{\tau_T}$$

- T_0 is reference temperature
- τ_t is a coupling / relaxation constant
 - τ_t tiny, heat moves fast. τ_t big, ...
- to implement this idea? Multiply velocities

^{*}Slight simplification of formula

Implementation of weak coupling

Scale velocities,
$$v_{new} = \lambda v_{old}$$
 and $\lambda = \left(1 + \frac{\Delta t}{\tau_T} \left(\frac{T_0}{T} - 1\right)\right)^{1/2}$

Intuitively

- Δt (time step) big ? temperature will change more
- what if $T_0 = T$?
- square root?
 - wrong T reflects a difference in v^2

Can we break this?

- what if part is hot?
- it may remain hotter than black part

Importance of heat baths

- Does not conserve energy In principle
- bring a system to equilibrium for temperature
 In practice
- avoid damage due to numerical errors / approximations
 For a system at equilibrium
- heat bath should do nothing

Does allow artificial tricks

- gently heat a system and watch behaviour
- gently cool a system and "anneal" it (more later)
- Extension to other properties
 - analogous reasoning for pressure bath

Summary of MD

Philosophy

natural way to copy/model/simulate nature

Lets one model processes in real time

MC	MD
• any cost/energy OK	requires continuous $E_{pot}(\mathbf{r})$
• time usually invalid	gives time scales
• most moves OK	physical trajectories
• Temperature enforced by	has explicit E_{kin}
acceptance	

both yield a Boltzmann distribution

both include entropy