Applications - MD / MC

Basic tools

- Force field
- MD / MC

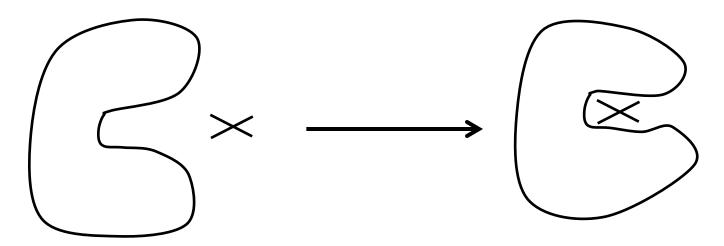
Some application areas

- timescales
- free energy calculations
- simulated annealing
- structure refinement

Simulating dynamics (optimistic / naïve)

Claim

protein has a hinge which must open to bind ligand



Can one see rates?

rates for different ligands?

Timescales

Most common quantity τ

- time to rotate by 1 rad
- time for decay in $A(t) = A(0) e^{-t/\tau}$
 - relaxation time
 - characteristic time
- times in proteins...

Typical times in proteins

	Amplitude (Å)	$\log_{10} \tau(s)$
bond vibration	0.01 - 0.1	-14 to -13
rotation of	5 – 10	-11 to -10
surface		
sidechain		
protein hinge	1 – 20	−11 to −7
bending		
rotation of	5	-4 to 0
sidechain in		
middle of a		
protein		
local loss of	5 – 10	-5 to +1
protein		
structure		

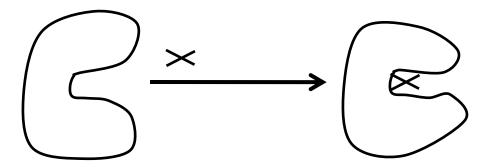
Timescales

- Typical big simulation $\approx 100 \text{ ns} = 10^{-7} \text{s}$
- Imagine event with characteristic time 10⁻⁷s
 - may or may not be seen
- consider time 10⁻⁸ s
 - may be seen a few times
- What you would like
 - 100's or 1 000's of observations
- Limits of timescales
 - fast events $\tau \ll t_{simulation}$ OK
 - events $\tau < t_{simulation}$ poor statistics
 - $\tau \approx t_{simulation}$ no statistics
- Previous example (drug binding)
 - it is not enough to observe an event once (or few times)

Free Energy Calculations

- Free energy is most important
- Predicting therapeutic efficacy

$$k_d = \frac{[\text{drug}][\text{protein}]}{[\text{drug-protein}]}$$
$$= e^{\frac{-\Delta G}{RT}}$$



Could we just look at energies? What are contributing terms?

- ligand-water \rightarrow ligand + water (many interactions, ΔS)
- ligand+protein
- ligand loss of entropy / water entropy change
 - simulate?

Infinite time - free energy estimate

$$DP \rightleftharpoons D + P$$

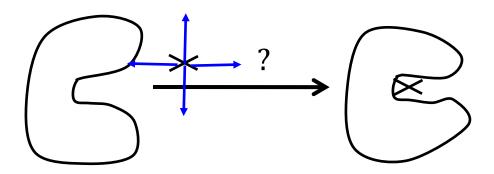
$$\Delta G = kT \frac{[D][P]}{[DP]}$$

Simulate for long time

- Ligand (drug) goes on and off protein
- Look at [D], [P] and [DP]
- Will not work

Free simulation for binding

If we simulate, where will the ligand go?



- may take years for ligand to find protein
 Short cut?
- force ligand to protein
 - artificial force + corrections
 - very difficult still requires rearranging water
 - entropy estimation very difficult

Estimating free energy differences

$$G = U - TS$$

but $S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$

- so we cannot really get S
- some books write in terms of partition function
- similar problem especially visiting high energy regions

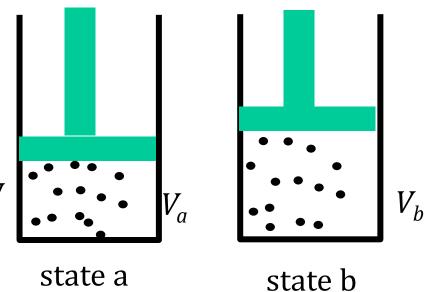
Forget absolute free energies

- concentrate on ΔG
- no problem usually interesting property

Work and free energy changes

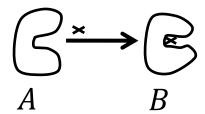
work done A to B

- free energy change
 - look at either state
 - real world automatically includes entropy

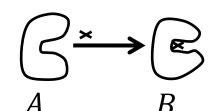


work going from unbound →bound

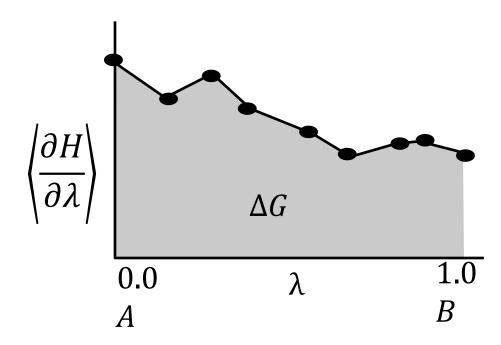
- ΔG_{AB}
- what is B? what is A?
 - more later
- measuring work?



Work and free energy



Measure the work needed to move from *A* to *B*



where *H* is again Hamiltonian $(E_{kin} + E_{pot})$

$$\Delta G = \int_A^B \left\langle \frac{\partial H(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda \quad \text{or} \quad \Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$$

Binding energy - feasibility

Would this approach work? $\langle \partial^H / \partial \lambda \rangle$ must be a good average (lots of fluctuations) must change λ slowly

Chemistry problems: your simulation would

- get averages with all water molecules
- gradually remove water molecules (high energy?)
- find the correct binding
- get good averaging there
- states A and B are very different they must be well sampled
- intermediate (higher energy states) must also be sampled
- does not work well in practice

Paths / Energy differences (detour)

Problem – the path is too difficult – changes too big

- Energy differences depend on end states not paths
- Look at $\Delta E_{1,2} = E_1 E_2$
 - would it matter if we go $E_1 \rightarrow E_3 \rightarrow E_2$?

Can we take even stranger paths?

- go through non existent E_4 ?
 - no problem

Same reasoning applies to free energies

$$E egin{array}{c} igwedge E_3 \ E_2 \ E_4 \end{array}$$

Applying different paths

Originally wanted (ligand A or B, protein P)

$$A + P \leftrightarrow AP$$
 ΔG_A what if I know B+ P \leftrightarrow BP ? ΔG_{AB} is easier $\Delta \Delta G_{AB} = \Delta G_A - \Delta G_B$

$$A + P \xrightarrow{\Delta G_A} AP$$

what would $\Delta \Delta G_{AB}$ mean?

what is relative binding strength?

$$B + P \xrightarrow{\Delta G_B} BP$$

Alternative routes

ΔG_A and ΔG_B too hard

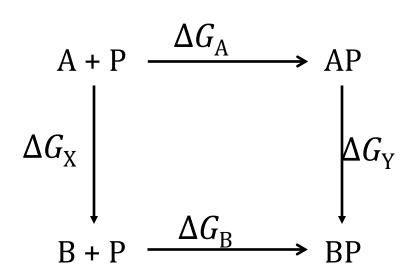
• we would be happy with $\Delta \Delta G_{AB}$

$$\Delta G_{\rm A} + \Delta G_{\rm Y} = \Delta G_{\rm B} + \Delta G_{\rm X}$$

$$\Delta G_{\rm A} - \Delta G_{\rm B} = \Delta G_{\rm X} - \Delta G_{\rm Y} \quad \text{remember } \Delta \Delta G_{\rm AB} = \Delta G_{\rm A} - \Delta G_{\rm B}$$

So
$$\Delta \Delta G_{AB} = \Delta \Delta G_{XY}$$

- why ΔG_X easier?
- why $\Delta G_{\rm Y}$ easier?



Easier free energy changes

if A/B are rather similar

$$AP \leftrightarrow BP$$
 or

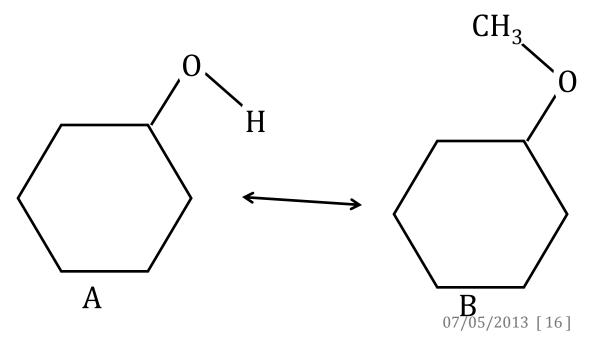
$$B + P \leftrightarrow A + P$$

(free A \leftrightarrow B)

- are small changes smaller than
 - removing water order, removing water energy, finding protein...

Example

small change



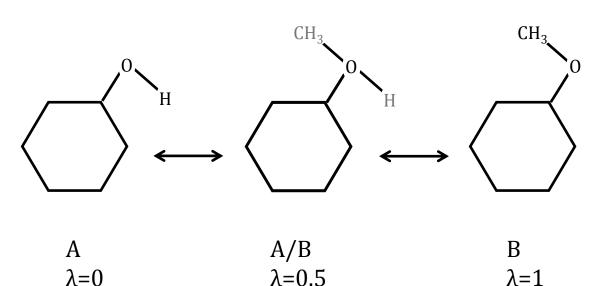
Fictitious states

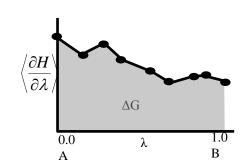
remember formula
$$\Delta G = \int_A^B \left\langle \frac{\partial H(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda$$

or

$$\Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$$

we need to make chemistry a function of $\,\lambda$



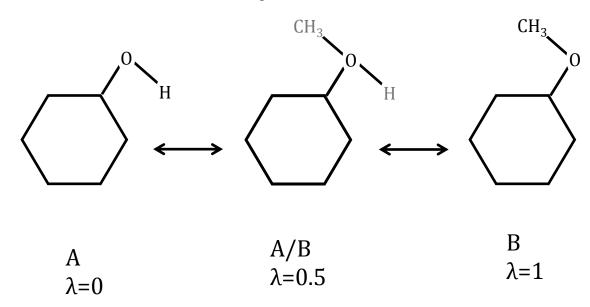


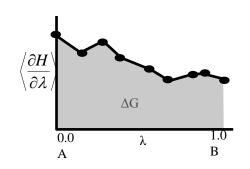
Fictitious states

remember formulae

$$\Delta G = \int_A^B \left\langle \frac{\partial H(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda$$
 and $\Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$

• make chemistry a function of λ





λ dependence

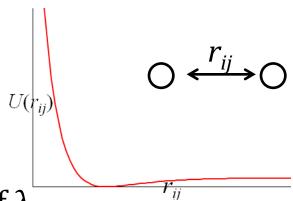
•
$$\lambda = 0$$

an OH group

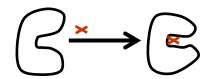
•
$$\lambda = 1$$

an OCH₃ group

- $\lambda = 0.5$
 - charge of H half of original charge
 - radius / size (σ, ε) half of real value and so on
 - atoms gradually
 - appear in one direction
 - disappear in other
- description of system is now function of λ

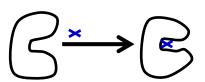


λ dependent simulations



Two simulations necessary

- λ from $0.0 \leftrightarrow 1.0$ in protein
- λ from $0.0 \leftrightarrow 1.0$ in water
- both from $red \leftrightarrow blue$



As λ slowly moves from 0.0

- water gradually feels more/less influence of some atoms
- system should not have to rearrange itself too much

When does method work best?

- when changes are small
 - comparison of similar ligands in a protein

Summary of free energy calculations

From first principles: free energy differences, equilibria

- easy to calculate
- in practice impossible (sampling not possible)

Forget absolute free energies

- ΔG determine most phenomena in the world Processes like binding still too difficult to simulate
- slow, too many conformations / states to visit Most calculations use $\Delta \Delta G$
- aim to get relative binding strengths

Simulated Annealing

Classic reference – in stine

Basic tools

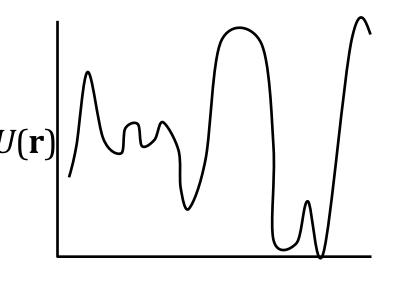
- MC or MD
 - with control of temperature (temperature bath)

Use: difficult optimisation problem

- chip layout
- travelling salesman problem
- protein structure

Optimisation problem

- several dimensional (2 to 2 000)
- many local minima



r

Procedure

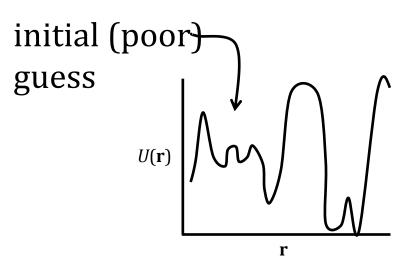
```
while (T > T_{end})

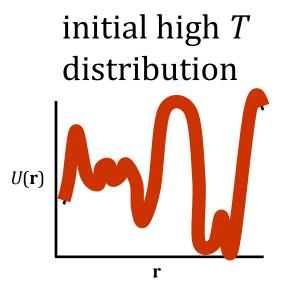
T(t) = T_0 e^{-ct}

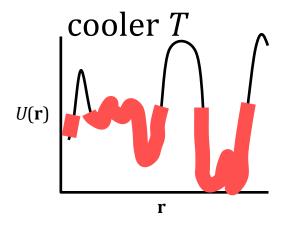
move system (Monte Carlo)
```

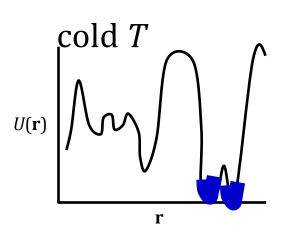
- T_0 initial temperature is hot
- *c* is decay rate (rate of decrease)
- cost function is
 - E_{pot} in chemistry
 - path length in travelling salesman
 - board cost in chip layout problem ...
- why may this work?

Simulated Annealing concept









Properties, practical issues

Admit that there may not be a best solution

not worth spending effort between many very good solutions

Some problems have "phase transitions"

How hot should T_0 be ?

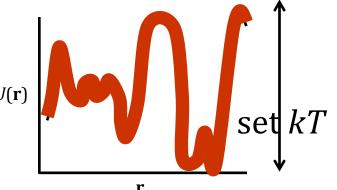
infinite? No: look at barriers

How slow should cooling be (c)?

- system should be at equilibrium
- very slow

Cool exponentially?

- best first guess
- should certainly cool more slowly at transition points



Anneal with MC or MD?

Historic use of Monte Carlo

easiest to apply to many problems

Use MD?

- provides expected advantages (efficiency)
- uses available gradient / derivative information

Implementation

Couple to temperature bath, make T time dependent

Use in practice?

- simulated annealing in
 - most MD codes, refinement packages, ...

Refinement of Structures (NMR / X-ray)

- Story from first semester Problem: generate protein coordinates from NMR information (or X-ray)
- distance geometry gives an initial guess, but
 - distance geometry methods spread error across all distances
 - errors are spread across bonds, measured distances
 - chirality may be broken (causes distance problems)

Belief

coordinates are not bad, but could be improved

Pseudo - energy terms

For some distance measurement *i* between some pair of atoms

- r_0 measured distance
- r(t) distance between particles at time (t)
- say $U_i(r) = c_i (r(t) r_0)^2$
- add this to normal force field

$$U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$

$$0 \qquad 5_{r(t)} \qquad 10$$

 $U_{phys}(\mathbf{r})$ normal force field - atomistic (bonds, electrostatics...)

result?

System moves to low energy + low fake energy

gradually moves to agree with experimental data

Practical issues

$$U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$

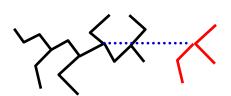
$$U_i(r) = c_i (r(t) - r_0)^2$$

- big *c* very artificial
- small c system will be slightly biased to agree with experimental data

Fake Energies

Fake energies for many purposes

- Refinement of
 - X-ray structures (common)
 - NMR (often)
 - others: microwave spectroscopy, ...
- Modelling problems
- you want to put a bond in a model
 - putting it in directly
 - high energy bond
 - system stuck in minimum
 - introduce a distance restraint
 - gradually increase associated constant c



Summary

What one can do with related methods

- look at timescales of motions (very superficial)
- free energy calculations important for problems such as binding of ligands
- simulated annealing methods used as minimizers, not necessarily to get an ensemble
- pseudo-(potential) energies (X-ray, NMR, ...)