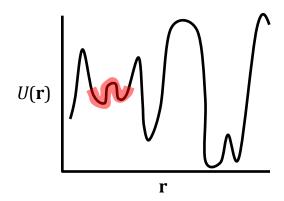
Modern Monte Carlo

Problems

- we are interested in properties at room temperature
- at room temperature, processes are slow
 - phase transitions, protein structure re-arrangement ..
 - system can be trapped



most large moves are rejected (wasted cpu time)

Goals

Speed simulation

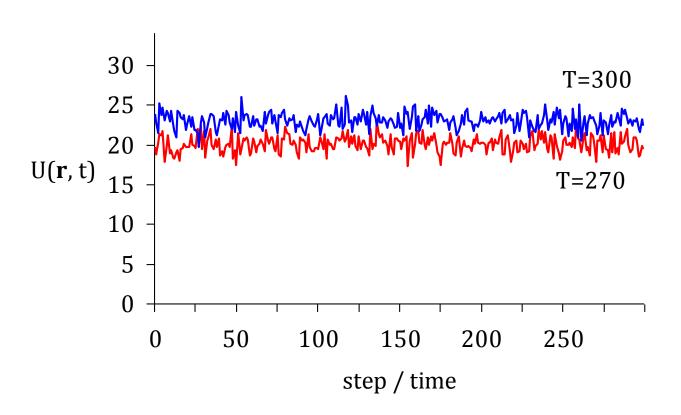
- two approaches
 - make barriers easier to pass
 - waste less time on failed moves

Restrictions

- must retain Boltzmann distribution
- must preserved detailed balance

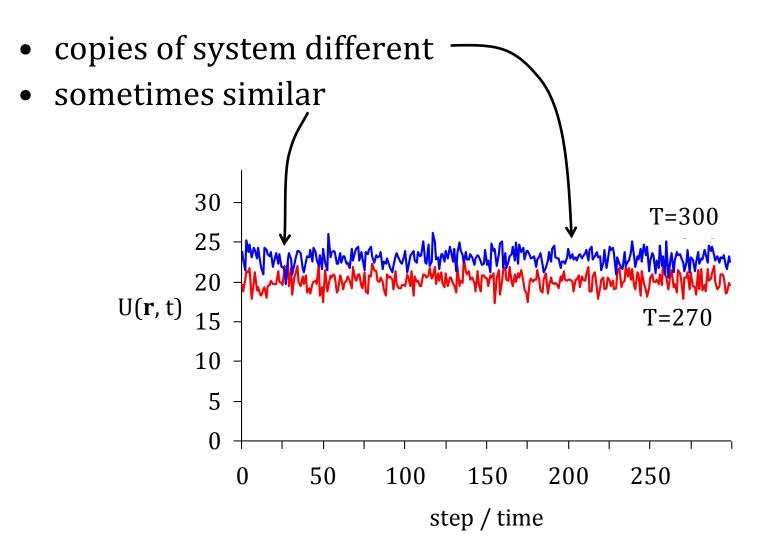
Parallel Tempering / Replica exchange

two simulations, two temperatures

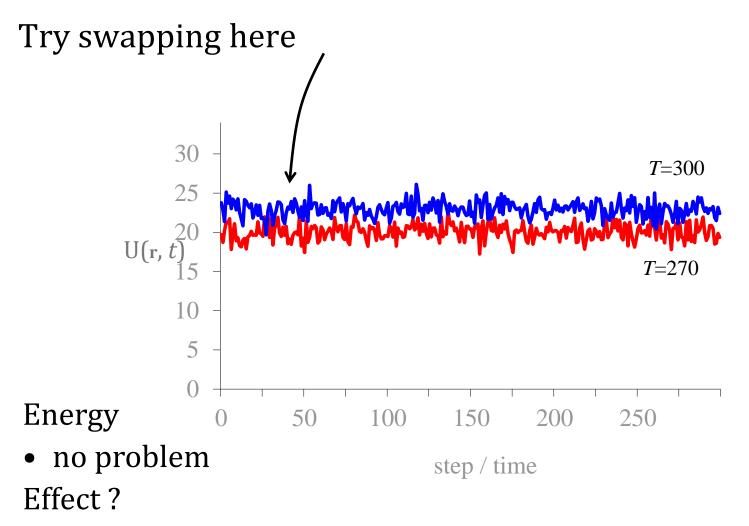


- hotter simulation moves faster, hops over barriers but
 - it does not give $\langle A \rangle$ for desired temperature (270)_{28/05/20}

Closer temperatures

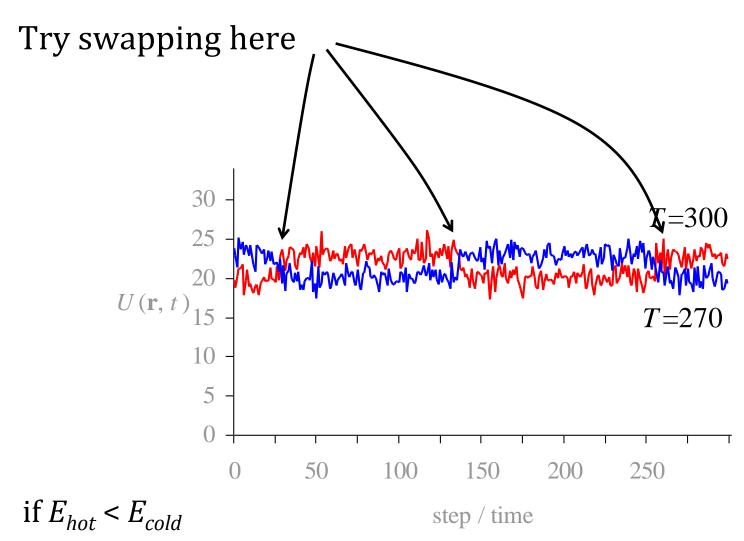


swaps of copies



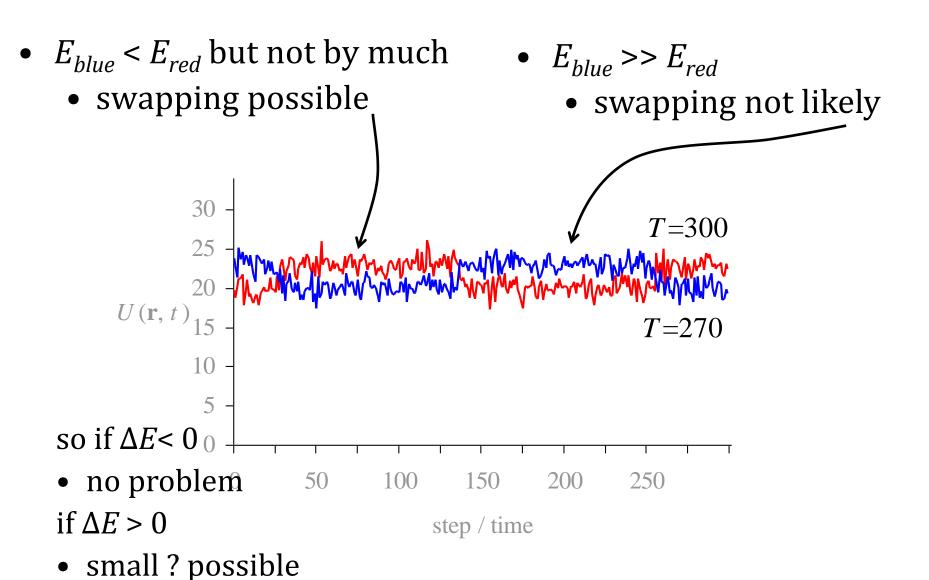
- we have correct energy of red system, but it has been hotter
 - more likely to cross barriers

easy swaps



• no problem to swap copies

possible swaps



• big?less likely

Probability of a total system

• probability of one system i $p_i = \frac{e^{-E_i/kT_i}}{Z_i}$

probability of whole system

$$p_{old} = p_i p_j = \frac{e^{-E_i/kT_i}}{Z_i} \frac{e^{-E_j/kT_j}}{Z_j}$$
$$= \frac{e^{\left(\frac{-E_i}{kT_i} + \frac{-E_j}{kT_j}\right)}}{Z_i Z_j}$$

- probability of system before and after swap? $\frac{p_{new}}{p_{old}}$
- Z's will cancel

Exchange Probability

Question

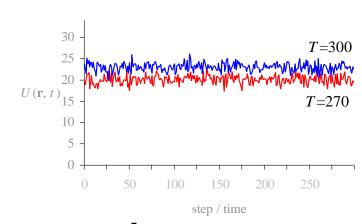
- could the blue be part of the red ensemble?
- could the red be part of the blue ensemble?

Depends on temperatures, ΔE

$$p_{swap} = \exp\left(\frac{E_j - E_i}{k(T_i - T_j)}\right)$$

if
$$p_{swap} > 1$$

accept



else use random number [0..1] and compare with p_{swap}

- consider $E_j \approx E_i$
- blue bit higher than red (moves likely)
- blue much higher than red (moves very unlikely)

Implementing

Example

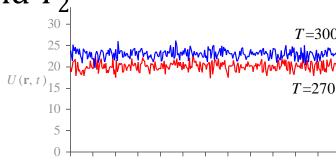
- try 100 moves normal MC of each system
- try 1 exchange / swap of systems
- swap means:

• in MC steps $(e^{-\Delta E/kT})$ change T_1 and T_2

Result

- two simulations
- each has Boltzmann distribution at right temperature
- cooler system has visited high temperatures / moved faster
- generalising

• ...



Many replicas

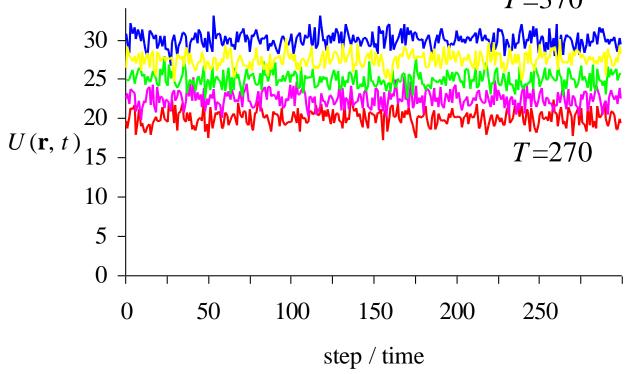
run many copies, similar temperatures

every N moves, attempt an exchange of any pair

T = 370

 normally blue would never exchange with red

 now possible in several steps



• red simulation is a valid ensemble at T_{red}

Implementation

Any set of exchange attempts OK

may not be efficient

Detail balance preserved

Easy to implement

- set up *N* simulations at different temperatures
- whenever a swap is successful, set T_i to T_j and T_j to T_i

Alternative perspective

- like simulated annealing but
 - annealing schedule (cooling) is automatic

Configurational Bias Monte Carlo Rosenbluth sampling

Many Monte Carlo methods

- do not take random step
- find a low energy direction
- trial move more likely in that direction
- make acceptance probability less likely

Result

less time spent generating unlikely moves + energy calculation

Rule

- must maintain detailed balance
- must finish with a Boltzmann distribution

Example – discrete system

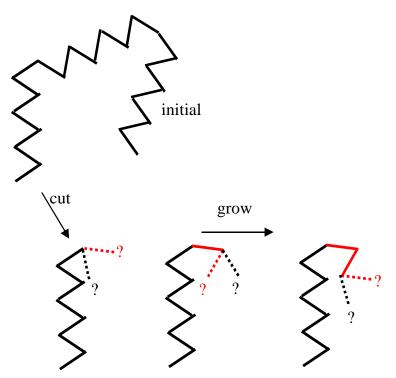
Discrete Models / Chain growth moves

Lattice / off-lattice often easier to deal with

- particles only exist in certain places
- can only occupy certain states
 Off-lattice discrete protein

Typical moves set

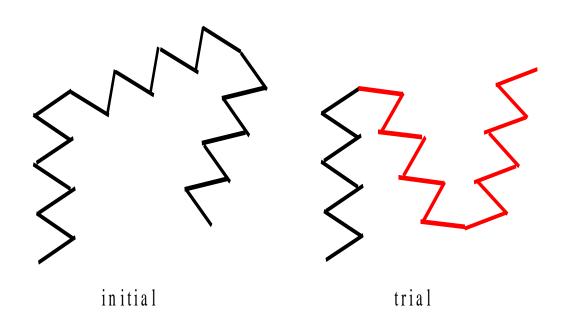
- pick random site in chain
- discard one half
- re-grow each site



- look at new configuration, accept/reject
- big reorganisation possible

Chain regrowth methods

- moves are big, but
 - in a dense system, most will be rejected
- we have big moves, but consider each step



Looking at sub-moves

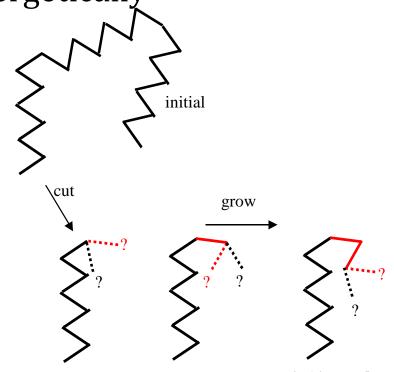
at first step

one possible direction is more likely

what if we move in the more likely region?

we will tend to move downhill energetically

- no Boltzmann distribution
- move $N_i \pi(i \rightarrow j) \neq N_j \pi(j \rightarrow i)$
 - detailed balance not preserved



Bias

Make downhill moves more likely

- make them more difficult to accept
 Sometimes try uphill moves
- gain
 - fewer attempts at uphill moves
 - keep detailed balance + Boltzmann distribution

Next step

- do several biased moves
 - set of (probably) downhill moves

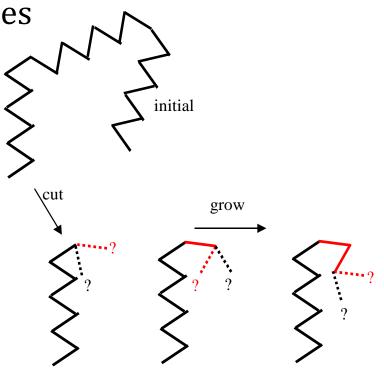
One step

Look at red and black choices

• calculate E_{black} , E_{red} and probabilities

$$p_{black} = \frac{e^{\frac{-E_{black}}{kT}}}{\sum_{i}^{red,black,\dots}e^{\frac{-E_{i}}{kT}}}$$

$$\sum_{i=1}^{N_{choices}} p_i = 1$$



- pick a direction according to p_i
- example...

direction picking

We have three possible directions

• $p_1 = 0.2$, $p_2 = 0.5$, $p_3 = 0.3$ from Boltzmann weights

```
pick random number 0 \le x \le 1
if 0 \le x < 0.2 choose (1)
elseif x < 0.7 choose (2)
else choose (3)
```

- what have we got now? not much yet
- usually choose single steps and preserve Boltzmann distribution

formalism

Where we have N_{choice} possible directions

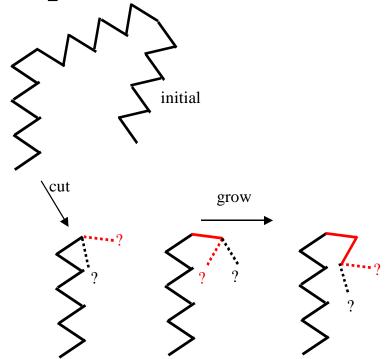
$$p_i = \frac{e^{\frac{-E_i}{kT}}}{w}$$

$$w = \sum_{j=1}^{N_{choice}} e^{\frac{-E_j}{kT}}$$

• w will come back in a moment

Several Bias steps

- break chain
- pick first step with bias
- second step with bias
- ...
- chain complete
- heavily biased
 - series of N_{step} steps usually favourable
 - without accept / reject along the way
- how to correct?
 - introduce "Rosenbluth factor"
 - W_o (old), W_n (new / trial)



Rosenbluth factor

Rosenbluth factor W_n

$$W = \prod_{m=1}^{N_{step}} w_m$$

$$p_i = \frac{e^{\frac{-E_i}{kT}}}{w}$$

$$w = \sum_{j=1}^{N_{choice}} e^{\frac{-E_j}{kT}}$$

Rosenbluth factor W_o

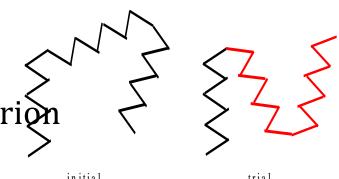
• pretend that the chain was chopped and calculate w_m for each step

Accept reject

- if $W_n/W_o > 1$ accept
- else accept with $p = W_n/W_o$

Net result?

- take N_{step} biased moves
- fix up distribution via acceptance criterion



Practical explanation (dense protein)

- each step we put atoms in a likely place (not on top of other atoms)
- after N_{steps} we have a chain which is probably physically likely (unlikely to waste time on crazy moves)

Compare with normal Monte Carlo

 to go from black to red would have required a very specific set of random moves (unlikely to be found)

Who uses configurational biased MC?

- proteins, polymers
- easiest when system is discrete
 - difficult to code in continuous systems
- typical of many methods (introduce bias and correct afterwards)
- putting techniques together

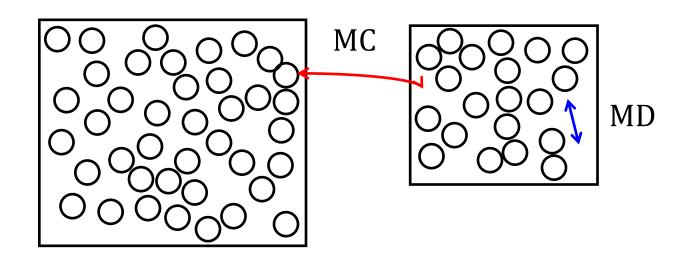
Combinations of techniques

Goal

- finish with a Boltzmann distribution
- dynamics? maybe

Combinations

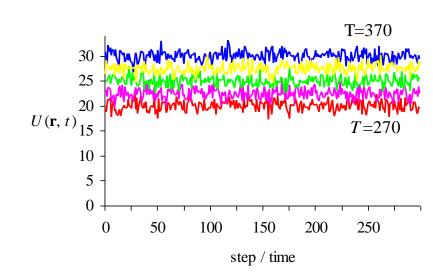
- Molecular dynamics and Monte Carlo?
- Monte Carlo good for non-physical systems



More combinations

Replica Exchange method

- MC or MD
- both will give ensemble / distribution at desired temperature



Imagine

- MC is good for complete re-arrangement of chain
- MD explores local (nearby) configurations
- could combine biased MC with MD

Comparison with other methods

- classic minimisation method genetic algorithm
- basic idea
 - 100 or 1000 copies of system (protein, travelling salesman routes)
- make 100 copies of system
 while (not happy)
 find 50 worst copies (highest energy) throw away
 copy 50 best
 for (i = 0; i < 50; i++)
 apply random changes, combine copies
- system will gradually improve fittest copies are kept

Comparing to MC

- Methods like genetic algorithm work with unknown distribution
- no theory to fall back on
 - no defined temperature
 - no defined probabilities

Summary of everything

Methods like molecular dynamics / Monte Carlo

- infinite number of variations possible / legal
- best may be system dependent
- not restricted to molecular / atomic systems

Arbitrary decisions

• temperature, move types