
Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [1 / 9]

Simple Discrete Simulations

Software project May 2013

1 Overall Plan.. 1

2 Introduction .. 2

3 Models .. 2

3.1 Particles ... 2

3.1.1 Excluded volume .. 2

3.1.2 Lennard-Jones / Noble gas / excluded volume ... 3

3.1.3 Particles with charges .. 4

3.2 Dynamics .. 4

4 Methods ... 5

5 Implementation ... 6

5.1 Standard library calls and documentations .. 6

5.2 Random numbers .. 7

6 Tasks ... 7

6.1 Generate coordinates .. 7

6.1.1 Format ... 7

6.1.2 Random coordinates ... 8

6.1.3 Uneven distribution .. 8

6.1.4 Testing .. 8

6.2 Simulation .. 8

1 Overall Plan

We start with a toy system to make sure we can write elegant, bug-free programs. Over the

coming weeks, we make the system and program more complicated. This hand-out gives an

overview. The extensions will be added in coming hand-outs.

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [2 / 9]

2 Introduction

It is most elegant to work out the properties of a system analytically. Sometimes it is easier

to simulate and see what happens. For example, you might say diffusion is well described

by Fick's equation, but could you describe the system analytically if we add walls or

obstacles ? If you have two charged particles, an equation for their interactions and initial

velocities, you can describe their paths (trajectories) analytically. If you have 10 particles,

there is no known analytical description. Here, we consider a problem where there is an

analytical form, then consider a slight complication which makes it much harder to

simulate.

Particle simulations are common in physics and chemistry when you have a model for the

interactions between particles. In astronomy, the main interaction is gravity and you might

simulate the paths of planets. In chemistry, the interactions the interactions are different

and you may not be interested in the individual particles and their exact paths. You are

probably interested in average behaviour, so you can calculate properties such as density,

viscosity, heat transport or compressibility.

We will describe particles in boxes, with simple interactions. This project will begin very

simply, but become more complicated. We will start with the distribution of particles in

boxes and use this to establish the basic machinery. If all goes well, we will try to reach ion-

selective membranes.

3 Models

All of the systems will be two dimensional. In the x direction, we will look at motions. In the

y direction, we will have hard walls.

3.1 Particles

We will consider three models.

3.1.1 Excluded volume

In many polymer simulations, there is very little attraction between particles, but the

important rule is that particles may not overlap. A good model looks like,

 {

(1)

 where is the distance between particles and reflects the size of the particles and

is the energy for exclusion (overlap).

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [3 / 9]

Graphically:

3.1.2 Lennard-Jones / Noble gas / excluded volume

Even in simple uncharged systems, there are weak attractive forces between the particles.

These are weak and short-range:

 {

(2)

where is the distance between particles i and j. You could also say,

-1

0

1

2

3

4

5

0 1 2 3 4 5

Eex

(arb units)

rij
(arb units)

-1

0

1

2

3

4

5

0 1 2 3 4 5

Eex

(arb units)

rij
(arb units)

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [4 / 9]

Both of these forms are discrete approximations to a continuous form

 ((

)

 (

)

). We use the discrete form because it is fast to calculate.

3.1.3 Particles with charges

Imagine we are simulating Na+ and Cl-. We have exclusion, as before, but now we add a

coulombic term so,

{

(3)

and you can draw a graph of this. is a constant which you could call the dielectric

constant or .

This model is similar to the real world. Particles with the same charge repel each other.

Particles with opposite charges attract each other, but there is always a stronger repulsion

at short distances, otherwise oppositely charged ions would collapse on to each other.

This interaction is continuous (not discrete) and will be slower to calculate.

3.2 Dynamics

There are different ways to model motions. Sometimes, particles have a memory. Their

velocity at time depends on their velocity at time . That would be a good way to

model planetary motion. Our particles have velocities, but no memory of them. This is the

classic model for systems such as colloids where the displacements are determined more

by collisions than by inertia.

We will make a slight simplification. We will move one particle at a time.

Systems in the world usually follow a Boltzmann distribution. The probability of state i is

 where is the energy of state i and is the partition function. k is the

Boltzmann constant and T is the temperature. We choose units of temperature so we can

pretend or simply say,

 . Temperature will not be important in the first

version, but it will be very important later.

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [5 / 9]

In the monte carlo method, one makes random moves and accepts them with a probability

from some distribution. In physics and here, this is usually the Boltzmann distribution. The

partition function might be important, but you cannot calculate it, so you cannot calculate

 . This is not a problem, if you have two states, you can calculate the relative probabilities,

. This means we have some starting coordinates with a probability and some trial

coordinates with a probability . The ratio of probabilities is

(4)

but we said we would use units so that disappears and we define . Then

we can write

 (5)

This leads to the Metropolis Monte Carlo Method.1

4 Methods

The most important method is metropolis monte carlo. In pseudo-code:

1 Metropolis, N., Rosenbluth, A. W., Rosenbluth, M. N. and Teller, A. H., Equation of State Calculations by Fast
Computing Machines. J. Chem. Phys., 1953. 21, 1087-1092.

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [6 / 9]

set max_steps

set t to temperature

store initial coordinates

store total energy in

while (nstep < max_steps) {

 move_coordinates_with_random_step

 calculate and

 if

 calculate

 from eq. 5

 else

 if (rand (0..1)) {

 save coordinates to

 ++

 }

 nstep++

}

5 Implementation

5.1 Standard library calls and documentations

Use standard library calls. You can find the documentation for all standard functions by

typing man drand48 / man getopt / man whatever. Do not use linux specific

functions. They are not necessary and only make your programs unportable. Functions

from the standard library are available on machines ranging from linux to windows.

Try to write robust code. Check the return value from every call to functions like

malloc() or fopen(). Check that your program is given the correct number of

arguments (check the value of argc). If your program is unhappy, print out the reason and

stop with exit (EXIT_FAILURE).

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [7 / 9]

5.2 Random numbers

You will need random numbers. When you want a number between 0 and 1, use

drand48(). When you want an unsigned integer between 0 and n, use

my_int = lrand48() % n.

Use srand48() to seed the random number generator. Do not use the time of day or

anything you think is random. In numerical work, one always uses a controlled series of

random numbers so you can reproduce a calculation and debug.

6 Tasks

It is easiest to have three programs.

1. generate coordinates

2. run a simulation

3. analysis

We will consider step 3 later.

6.1 Generate coordinates

We need a program for generating initial coordinates. This will let one try out different

ideas and starting points. For today, we will consider two variations, give below. The

program must take the following arguments:

1. Number of particles (n)

2. x dimension (size in arbitrary units)

3. y dimension (size in arbitrary units)

Given the arguments, your program should place n particles within the box and write

coordinates to a file.

6.1.1 Format

At the moment, all particles are the same. Let us start with a format like

nnnn

x1 y1

x2 y2

…

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [8 / 9]

Where the first number, nnnn, is the number of particles in the file. Later, we can add more

columns with properties of the particles, such as charge.

6.1.2 Random coordinates

Just place n particles in the box randomly.

6.1.3 Uneven distribution

Place n particles in the box, but place all of them in the first 10 % of the x coordinate.

6.1.4 Testing

We will not worry about collisions in the initial coordinates. You should check that your

program works when you

 have 0, 1, 104 particles

 have and

You should be happy with this part of the code before you go on. If you have problems at

this stage, you will have worse problems in two or three weeks.

The format above lets you quickly check if the coordinates appear to be sensible. Since it is

an xy file, you can make a scatter plot in gnuplot/xmgrace/your favourite plotting program.

Obviously, there should be no points outside of the regions you picked.

6.2 Simulation

Let us hardwire the size of the particle () in eq. 1 and set it to 1.0 units. Although it would

be more elegant to put in a command line option which lets you specify .

You have to write a simulation program which implements the collision avoidance in eq. 1.

As you are writing, remember that we will move to the other interaction forms (eq. 2 and

eq. 3) over the next few weeks. The program arguments should be

 number of steps

 temperature

 input coordinate file

 how often to write out coordinates

 optionally – seed for the random numbers

The program should

Z:\summer_13_teaching\cis_programming\cis_prog_uebung_may_13.docx 29. Mai. 2013 [9 / 9]

 read the initial coordinates, simulate according to the pseudo code on page 5. Every

m steps, it should write out coordinates.

 Include code to write out the energy every step

Problem for you to solve:

The energy form given by eq. 1 has an infinity when particles overlap. Once the system is at

equilibrium, this is not a problem. Any move which leads to overlapping particles will be

rejected. The starting coordinates are not at equilibrium and may have overlapping

particles. This means, that at the start, you will move particles. The result you want is,

if the move introduces a new overlap

 the energy goes up by ∞ and is rejected

if the move decreases the number of overlapping particles

 the energy goes down and the move will be accepted

if the number of overlapping particles does not change

 the move will be accepted

The problem is, that the ∞ is very artificial. Ask yourself if you really need +∞, or if a large

positive number is sufficient. What is the danger with replacing +∞ with a large positive

number ?

You will be left alone with the programming, but before you start, we will discuss

 ways to calculate energy

 structuring the code so it can be extended

 the parameters you will need to move between different score functions

