Applications – MD / MC

Basic tools

- Force field
- MD / MC

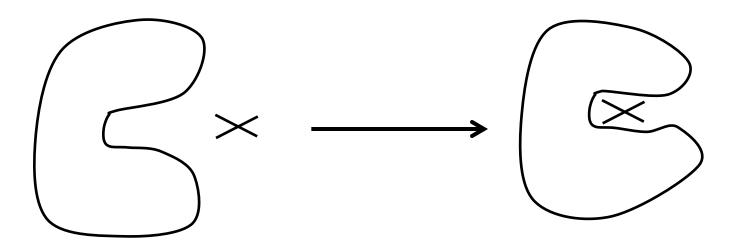
Some application areas

- timescales
- free energy calculations
- simulated annealing
- structure refinement

Simulating dynamics (optimistic / naïve)

Claim

protein has a hinge which must open to bind ligand



Can one see rates?

• rates for different ligands?

Timescales

Most common quantity τ

- time to rotate by 1 rad
- time for decay in $A(t) = A(0) e^{-t/\tau}$
 - relaxation time
 - characteristic time
- times in proteins...

Typical times in proteins

	Amplitude (Å)	$\log_{10} \tau(s)$
bond vibration	0.01 - 0.1	-14 to -13
rotation of surface sidechain	5 – 10	−11 to −10
protein hinge bending	1 – 20	−11 to −7
rotation of sidechain in middle of a protein	5	-4 to 0
local loss of protein structure	5 – 10	-5 to +1

Timescales, simulations, statistics

Typical big simulation $\approx 100 \text{ ns} = 10^{-7} \text{s}$

- Imagine event with characteristic time $10^{-7}s$ may or may not be seen Consider time $10^{-8}s$
- may be seen a few times

What you would like - 100's or 1000's of observations

fast events	$ au \ll t_{simulation}$	OK
	$ au < t_{simulation}$	poor statistics
slower events	$t \approx t_{simulation}$	no idea / very bad statistics

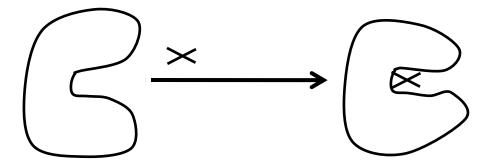
Previous example (drug binding)

• it is not enough to observe an event once (or few times)

Free Energy Calculations

$$k_d = \frac{[\text{drug}][\text{protein}]}{[\text{drug-protein}]} = \frac{[\text{D}][\text{P}]}{[\text{DP}]}$$

$$=e^{\frac{-\Delta G}{RT}}$$



Contributing terms?

- ligand-water \rightarrow ligand + water (many interactions, ΔS)
- ligand+protein
- ligand loss of entropy / water entropy change
 - simulate?

Infinite time - free energy estimate

$$DP \rightleftharpoons D + P$$

$$\Delta G = kT \frac{[D][P]}{[DP]}$$

Very simple - simulate for long time

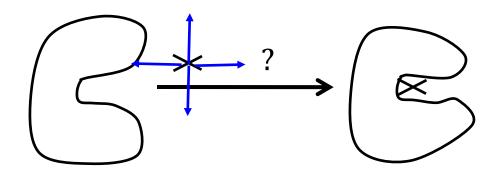
- Ligand (drug) goes on and off protein
- Look at [D], [P] and [DP] calculate ΔG directly from concentrations

Will not work – cannot simulate long enough Coming philosophy

• DP \rightleftharpoons D + P is too hard, find an alternative

Free simulation for binding

If we simulate, where will the ligand go?



May take years for ligand to find protein

Short cut?

- force ligand to protein
 - artificial force + corrections
 - very difficult still requires rearranging water
 - entropy estimation very difficult

Estimating free energy differences

$$G = U - TS$$

but $S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$

- so we cannot really get *S*
- similar problem especially visiting high energy regions

Forget absolute free energies

- concentrate on ΔG
- no problem usually interesting property

Summarise free energy problem so far

- Sounds easy, just estimate [D], [P], [DP] will not work no simulation long enough
- Cheat push ligand in? System not at equilibrium, requires work
- Chemically difficult lots of interations
 - requires completely changing water configuration
 - breaking ligand-water interactions, finding the correct ligand-protein binding
 - big change in solvent entropy, ligand entropy, protein entropy

How can one minimise the problems?

do an easier problem (soon)

First - small detour on work

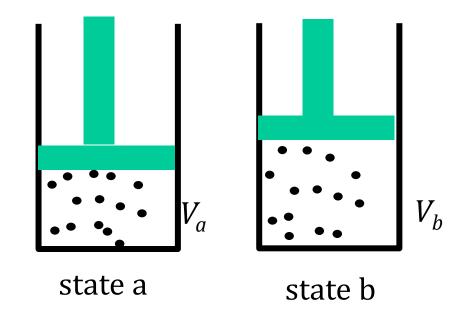
Work and free energy changes

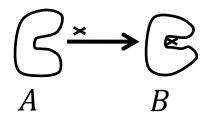
work done A to B

- free energy change
 - look at either state
 - real world automatically includes entropy

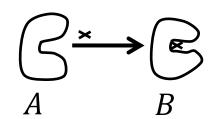
Work going from unbound →bound

- ΔG_{AB}
- what is B? what is A?
 - more later
- measuring work?

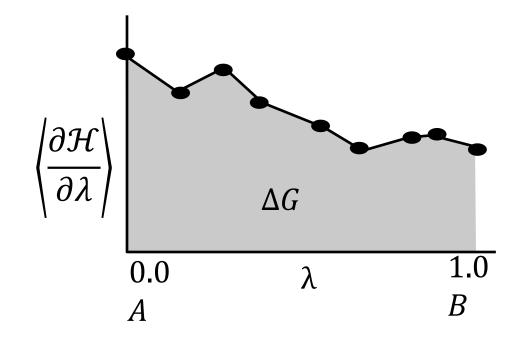




Work and free energy



Measure the work needed to move from *A* to *B*



where \mathcal{H} is again Hamiltonian $(E_{kin} + E_{pot})$

$$\Delta G = \int_A^B \left\langle \frac{\partial \mathcal{H}(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda \quad \text{or} \quad \Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$$

Binding energy - feasibility

```
Would this approach work? \langle \partial^{\mathcal{H}}/\partial \lambda \rangle must be a good average (lots of fluctuations) must change \lambda slowly
```

Chemistry problems: your simulation would

- get averages with all water molecules
- gradually remove water molecules (high energy?)
- find the correct binding
- get good averaging there
- states A and B are very different they must be well sampled
- intermediate (higher energy states) must also be sampled
- does not work well in practice

Paths / Energy differences (detour)

Problem – the path is too difficult – changes too big

- Energy differences depend on end states not paths
- Look at $\Delta E_{1,2} = E_1 E_2$
 - would it matter if we go $E_1 \rightarrow E_3 \rightarrow E_2$?

Can we take even stranger paths?

- go through non existent E_4 ?
 - no problem

Same reasoning applies to free energies

$$E$$

$$\begin{bmatrix}
E_{3} \\
E_{2} \\
E_{1}
\end{bmatrix}$$

Applying different paths

Originally wanted (ligand A or B, protein P)

$$A + P \leftrightarrow AP$$

$$\Delta G_{\rm A}$$

$$B + P \leftrightarrow BP$$
?

$$\Delta G_{\rm B}$$

If I know $\Delta G_{\rm B}$

$$\Delta\Delta G_{AB}$$
 is easier

$$\Delta \Delta G_{AB} = \Delta G_A - \Delta G_B$$

$$A + P \xrightarrow{\Delta G_A} AP$$

What would $\Delta \Delta G_{AB}$ mean?

• relative binding strength

$$B + P \xrightarrow{\Delta G_B} BF$$

Alternative routes

ΔG_A and ΔG_B too hard

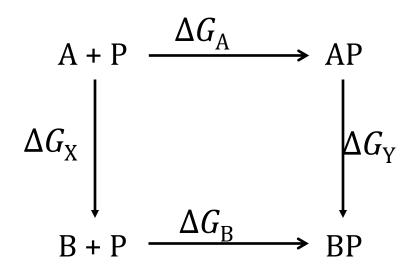
• we would be happy with $\Delta \Delta G_{AB}$

$$\Delta G_{\rm A} + \Delta G_{\rm Y} = \Delta G_{\rm B} + \Delta G_{\rm X}$$

$$\Delta G_{\rm A} - \Delta G_{\rm B} = \Delta G_{\rm X} - \Delta G_{\rm Y} \quad \text{remember } \Delta \Delta G_{\rm AB} = \Delta G_{\rm A} - \Delta G_{\rm B}$$

So
$$\Delta \Delta G_{AB} = \Delta \Delta G_{XY}$$

- why $\Delta G_{\rm x}$ easier?
- why $\Delta G_{\rm Y}$ easier?



Easier free energy changes

if A/B are rather similar

$$AP \leftrightarrow BP$$
 or

$$B + P \leftrightarrow A + P$$

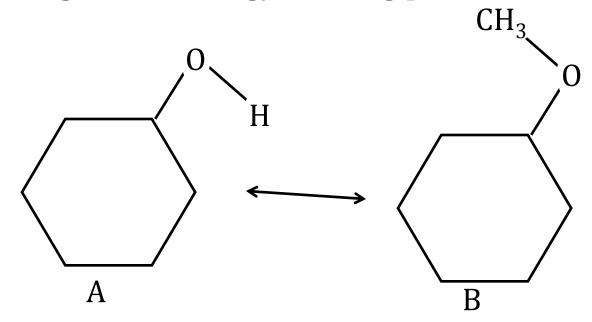
(free $A \leftrightarrow B$ forget the protein)

are small changes - smaller than

removing water order, removing water energy, finding protein...

Example

small change

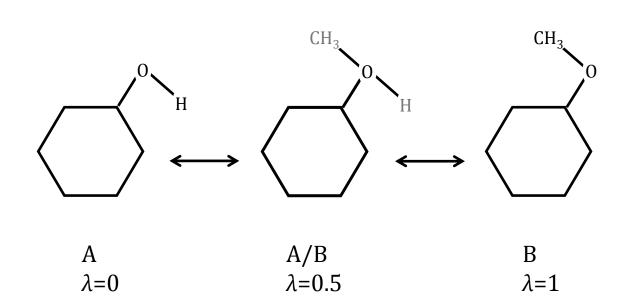


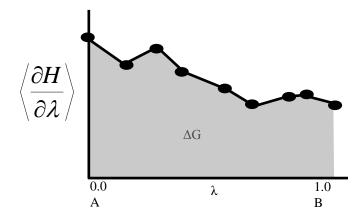
Fictitious states

Remember formulae

$$\Delta G = \int_A^B \left\langle \frac{\partial \mathcal{H}(\mathbf{p}, \mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda$$
 and $\Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$

make chemistry a function of λ





λ dependence

•
$$\lambda = 0$$

an OH group

• $\lambda = 1$

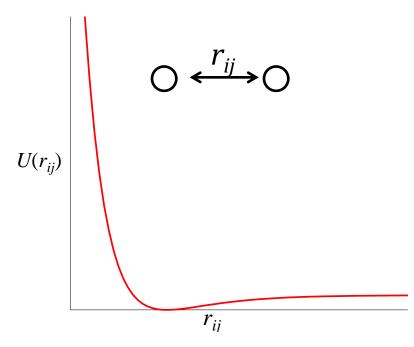
an OCH₃ group

- $\lambda = 0.5$
 - charge of H half of original charge
 - radius / size (σ, ε) half of real value and so on

Atoms gradually

- appear in one direction
- disappear in other

Description of system is now function of λ



λ dependent simulations (>×)

Two simulations necessary

- λ from $0.0 \leftrightarrow 1.0$ in protein
- λ from $0.0 \leftrightarrow 1.0$ in water
- both from red \leftrightarrow blue

As λ slowly moves from 0.0

- water gradually feels more/less influence of some atoms
- system should not have to rearrange itself too much

When does method work best?

- when changes are small
 - comparison of similar ligands in a protein

Tired, bored, sleepy?

Seminar 26 Jun 16:00 on this topic

- Clara Christ (Bayer Berlin)
- calculations are fast, easy
- more sophisticated versions of what I described

Summary of free energy calculations

From first principles: free energy differences, equilibria

- easy to calculate
- in practice impossible (sampling not possible)

Forget absolute free energies

- ΔG determine most phenomena in the world Processes like binding still too difficult to simulate
- slow, too many conformations / states to visit Most calculations use $\Delta\Delta G$
- aim to get relative binding strengths

Simulated Annealing

Classic reference – in stine

Basic tools

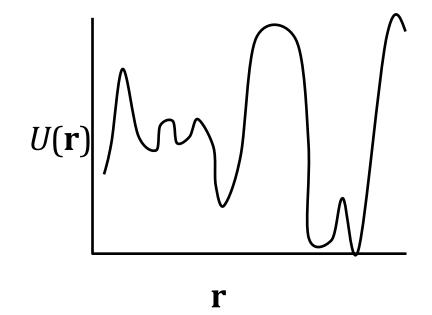
- MC or MD
 - with control of temperature (temperature bath)

Use: difficult optimisation problem

- chip layout
- travelling salesman problem
- protein structure

Optimisation problem

- several dimensional (2 to 2 000)
- many local minima



Procedure

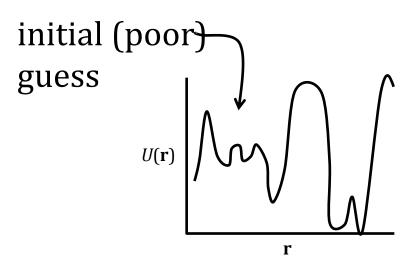
```
while (T > T_{end})

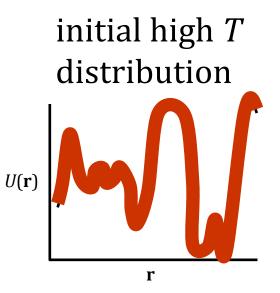
T(t) = T_0 e^{-ct}

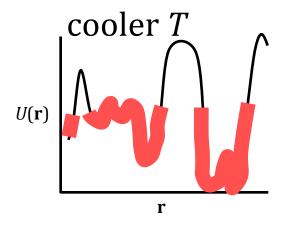
move system (Monte Carlo)
```

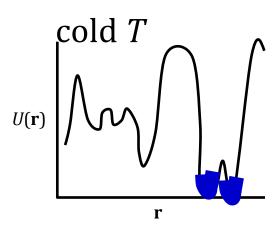
- T_0 initial temperature is hot
- *c* is decay rate (cooling of system)
- cost function is
 - E_{pot} in chemistry
 - path length in travelling salesman
 - board cost in chip layout problem ...
- why may this work?

Simulated Annealing concept









Properties, practical issues

Admit that there may not be a best solution

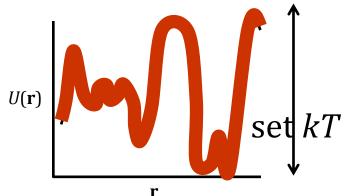
• not worth spending effort between many very good solutions Some problems have "phase transitions"

How hot should T_0 be ?

- infinite? No: look at barriers How slow should cooling be (*c*)?
- system should be at equilibrium
- very slow

Cool exponentially?

- best first guess
- should certainly cool more slowly at transition points



Anneal with MC or MD?

Historic use of Monte Carlo

easiest to apply to many problems

Use MD?

- provides expected advantages (efficiency)
- uses available gradient / derivative information

Implementation

• Couple to temperature bath, make *T* time dependent

Use in practice?

- simulated annealing in
 - most MD codes, refinement packages, ...

Refinement of Structures (NMR / X-ray)

- Story from first semester
- Problem: generate protein coordinates from NMR information (or X-ray)
- distance geometry gives an initial guess, but
 - distance geometry methods spread error across all distances
 - errors are spread across bonds, measured distances
 - chirality may be broken (causes distance problems)

Belief

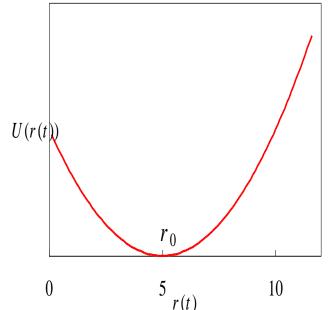
coordinates are not bad, but could be improved

Pseudo – energy terms

For some distance measurement *i* between some pair of atoms

- r_0 measured distance
- r(t) distance between particles at time (t)
- say $U_i(r) = c_i(r(t) r_0)^2$
- add this to normal force field

$$U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$



 $U_{phys}(\mathbf{r})$ normal force field - atomistic (bonds, electrostatics...) $^{r(t)}$

result?

System moves to low energy + low fake energy

• gradually moves to agree with experimental data

Practical issues
$$U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$

$$U_i(r) = c_i (r(t) - r_0)^2$$

- big *c* very artificial
- small *c* system will be slightly biased to agree with experimental data

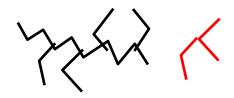
Fake Energies - examples

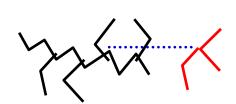
Refinement of

- X-ray structures (common)
- NMR (often)
- others: microwave spectroscopy, ...

Modelling problems

- you want to put a bond in a model
 - putting it in directly
 - high energy bond
 - system stuck in minimum
 - introduce a distance restraint
 - gradually increase associated constant *c*





Summary

What one can do with related methods

- look at timescales of motions (very superficial)
- free energy calculations important for problems such as binding of ligands
- simulated annealing methods used as minimizers, not necessarily to get an ensemble
- pseudo-(potential) energies (X-ray, NMR, ...)