Water models / solvation

Biggest effects of water

- electrostatic
- dynamic
- Model types
- explicit
- implicit

Dynamic effects of water

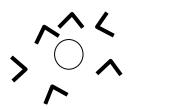
Dynamic effects of water

one lonely moving particle

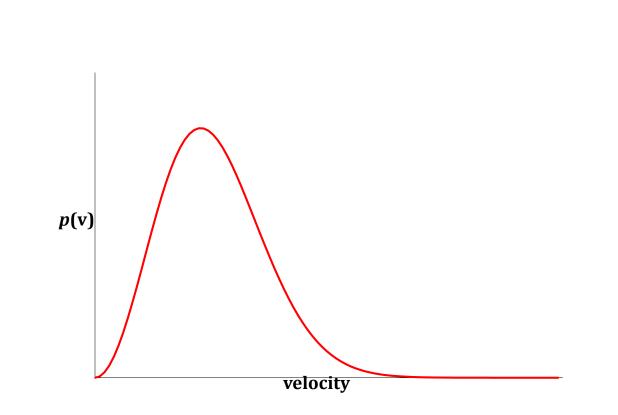
- initial velocity \dot{x}_t
- future velocity easy $\dot{x}_{t+\delta t} = \dot{x}_t$
- energy ? constant $\frac{m \dot{x}^2}{2}$

two particles ? interacting ?

- future velocity a bit more difficult
- easily bounded cannot be more than $\frac{r}{r}$


$$\frac{m_1 \dot{x}_1^2 + m_2 \dot{x}_2^2}{2}$$

one particle in water...


$$\bigcirc \longrightarrow$$

Velocities of particles in water

• lots of random interactions

- a small velocity ?
- a big velocity ?
- a probability distribution
- +
- how does \dot{x}_t tell us about $\dot{x}_{t+\delta t}$?
 - much less

Modelling dynamic effects

Summary

- solvent will add fluctuations
- makes us forget velocity faster

Can this be modelled ?

- yes (in molecular dynamics simulations)
- not really a force field / energy topic
- add random fluctuations to velocities
- can be made to look like water

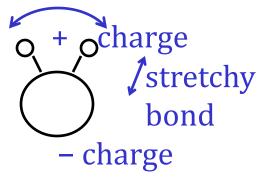
Electrostatic effects of water

water molecules

- not charged
- polar

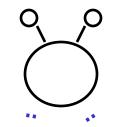
Interaction between charges very different if water in between

• details soon


Explicit water

Earlier descriptions of proteins

- a set of connected atoms
- extend to include water

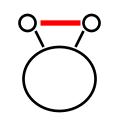

What does water look like?

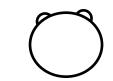
flexible angle

What else has it got?

- think about electron pairs on "O"
- what is really important?

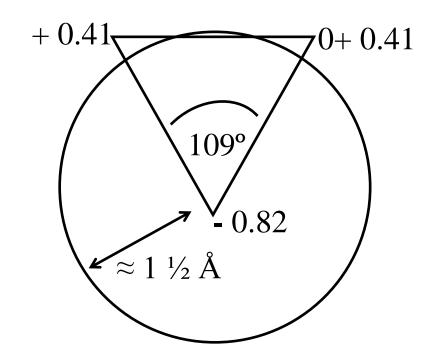
Important features of a water model


Do we care about water internal dynamics ?

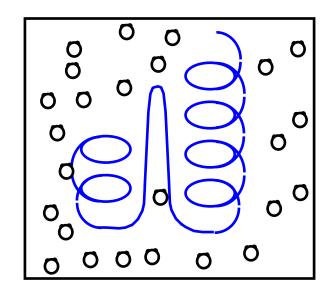

- usually not
- make bonds rigid
- make angle rigid
 - treat as a bond
- Dimensions
- protons are really small
- does water geometry matter ?
 - usually not

Charge

• most important Final result..



A useful explicit water model


- 3 charges
- 1 Lennard-Jones radius
- 3 masses why?
 - only for molecular dynamics
- 3 bonds (completely rigid)
- Name "SPC"
- What can it do?
- diffusion, density, compressibility, heat capacity
- dielectric constant
- solvation energies ?
- Perfect ?
- no
 - add polarisation, bonds, bond angles, offset charge from mass

Explicit water + protein

Protein water interactions

- via charge
- via Lennard-Jones term (r⁻¹² and r⁻⁶)
 Only average properties are interesting
- useful only in simulations (MC, MD)
 Elegant / Simple
- automatically incorporates
 - dynamic effects
 - electrostatics
- Problems
- very expensive
- typical simulation 10³ protein atoms
- 10⁴ solvent atoms

worst case for proteins + water

Imagine a world with no cutoffs for interactions

- scales as $O(n^2)$
- adding water takes 5 or 10 times as many atoms
- takes 25 or 100 times as much CPU time

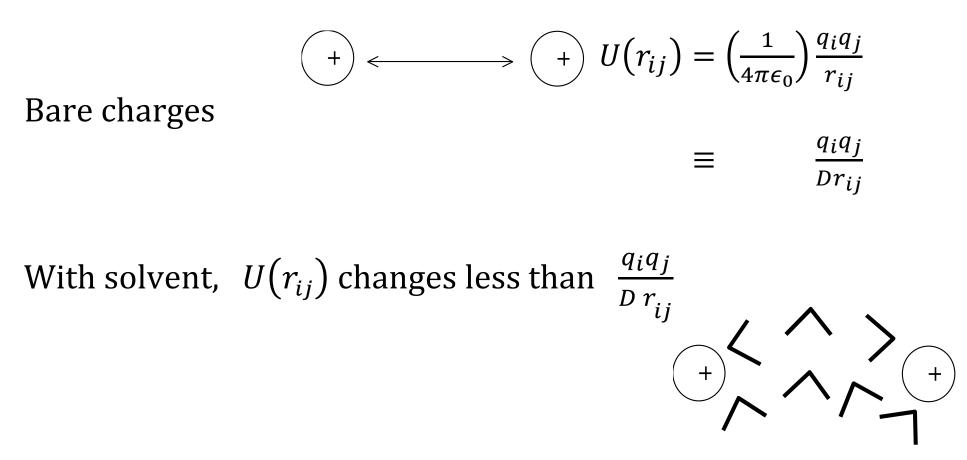
Even worse

• proteins move more slowly in water (viscosity)

What to do?

• look for cheaper model

Cheaper water models


Do we really need dynamic effects of water?

- maybe not
 - only want energies
 - only care about structures
- or
 - model with a random force

Then look for model which gets most essential aspects of water

- electrostatics
 - distance dependent dielectric
 - reaction field
 - surface area methods

Distance dependent idea

Net effect ?

- water is very polar and tends to orient itself around charges
- as if the water "screened" the charges (makes them smaller)

Distance dependent dielectric implementation

Invent approximation $D_{eff} = r_{ij}$ then

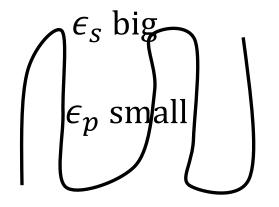
$$U(r_{ij}) \approx \frac{q_i q_j}{D_{eff} r_{ij}} \approx \frac{q_i q_j}{r_{ij}^2}$$

Is this physics ?

• no

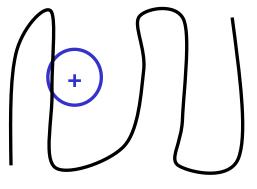
Does it work?

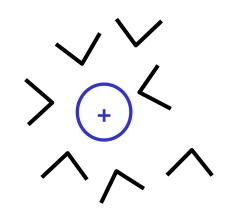
- a bit (ugly)
- little real physical basis
- water does not behave so simply
- fundamental problem...


Fundamental problem with distance dependent D

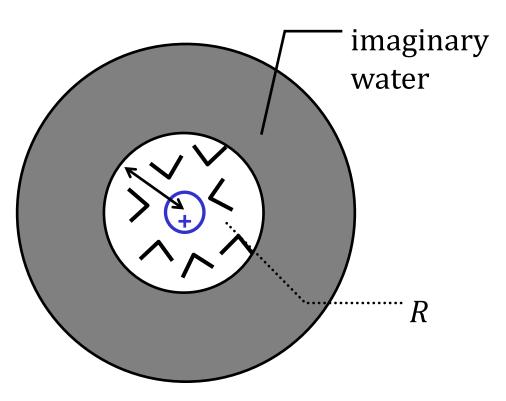
Of we rely on distance dependent dielectric constant

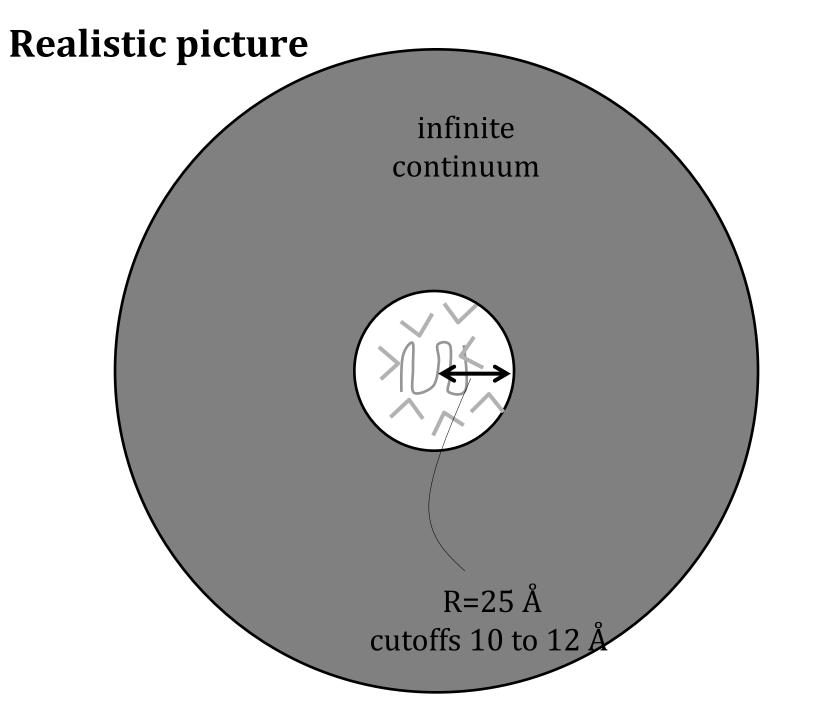
• assume one 'fix' works everywhere (not true)


Think of formula
$$U(r_{ij}) = \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}$$

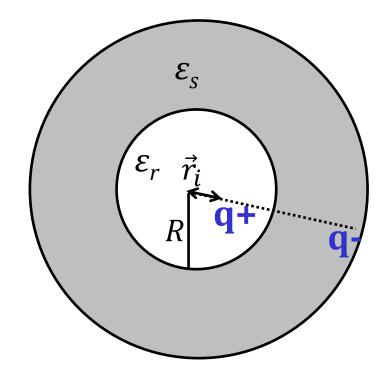

Model will differ on big and small proteins

Reaction field idea


- different problem to before
- charge in a protein (lots of neutral CH groups)
 - not much happens
- particle in water
 - what does the water do ?
 - tends to orient
 - lots of q^+q^- interactions
 - much better energy
 - is this like a force ?
 - yes, think $\frac{-dU}{dr}$
 - can this be modelled ?



interaction with imaginary solvent


- think of particle interacting with distant water molecules
- our charge interacts with them all but
 - if they are far away (big *R*) less important
 - depends on dielectric constant
 - inside white region ε_r and
 - grey region ε_s
- within white region
 - treat atoms with a correction
- grey region
 - treat as continuum

Reaction field / image charge formula

- as if we interact with an "image" charge
- size $q_{im} = -\frac{\epsilon_s \epsilon_r}{\epsilon_s + \epsilon_r} \frac{q_i R}{r_i}$
- location $\left(\frac{R}{r_i}\right)^2 \vec{r_i}$
- near middle
 - $R \gg r_i$
 - image far away
- near boundary
 - imaginary solvent important
 - strong (favourable) interaction
- important result
 - we have modelled the happiness of a charge in solution
 - charges happiest on outside of protein

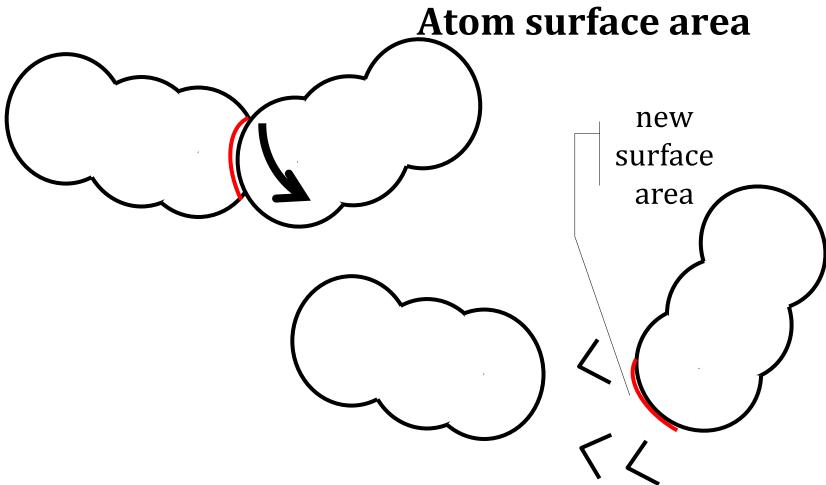
Reaction fields and pairs

- charge q_i interacts with water
- water responds
- q_i feels effect of water

• no longer
$$U(r_{ij}) = \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}$$

• instead,
$$U(r_{ij}) = \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}} \cdot f(q_i, q_j, \text{distances to centre, ...})$$

Simpler ways to model solvent


Problem with real physics

- if you use this model, you are obliged to use
 - real charges, real coordinates...
- parameters not perfect
- hard to rationalise repairs
- Many effects simultaneously
 - charges interacting with water dipoles
 - loss of water water interactions
 - change of solvent entropy
 - change of solute entropy ?
- Different approach
 - less rigorous models

Basis of quick water model

Philosophy

- I can not model water properly
- find a very general way to incorporate effects
- Water makes some atoms happy
- Others do not care too much
- Find some very general way to include water effects
 - whether they are favourable / unfavourable
- what is easiest way to think about water influence ?

Simple model

• for each atom, energy depends on surface area

Formalising SASA model

- Solvent accessible surface area (SASA)
- for every atom, $i \qquad G_i^{solv}(\vec{r}_i) = \gamma_i A_i(\vec{r}_i)$
- *G* because we no longer have a pure potential energy
- $G_i^{solv}(\vec{r}_i)$ because the energy term depends on coordinates
- γ_i is a specific parameter for each kind of atom
 - for O, N will be negative
 - for CH, CH₂, CH₃ will be positive or near zero
- area, A_i , has to be calculated

Problems

- *A_i* is difficult to calculate
 - use approximation
- γ_i not easy to estimate

Example SASA calculation¹

- classical atomistic force field
- distance dependent dielectric
- two γ_i parameters, $\gamma_{\rm C,S}$ =0.012 and $\gamma_{\rm O,N}$ = 0.060 kcal mol⁻¹

Results

- better than *in vacuo*
 - deviation from known structure during simulation
 - not too many H-bonds formed
 - radius of gyration ? (how big is protein)
- why do they appear OK ? why only two γ_i ?
 - not tested in detail
 - worst problems fixed

summary

- Explicit water is best, but expensive
- We have not discussed dynamic effects
- distance dependent dielectric +
 - SASA style models
 - complementary
- many variations
 - surface accessible volume
 - more γ_i parameters
 - add in reaction field for better long range electrostatics
- changes and flaws in one parameter are hidden by others