Grand Plan

RNA very basic structure 3D structure Secondary structure / predictions The RNA world

very quick

Roles of molecules

	RNA	DNA	proteins
genetic information	yes	yes	
catalysis	yes		yes
regulation/interactions	yes	yes	yes
structure	usually single stranded	usually duplex	lots

Catalysis and binding

Catalysis

- proteins classic enzymes
- RNA less common, but well established (ribosome, hammerhead, ..)

Specific binding

- proteins
 - bind substrates, ligands, DNA, RNA
- DNA
 - sequence specific binding to proteins, RNA, DNA
- RNA
 - same as DNA +
 - specific catalysis implies specific recognition
 - switches and regulators

Recognition / binding specificity

Protein view – via evolution

- protein scaffold / framework positions groups
- in binding / reactive region specific groups interact
- big choice of chemical groups (20 amino acids)

DNA – not thought of in these terms

- some specificity
 - regulatory binding proteins are sequence specific
 - cleavage enzymes sequence specific

RNA

- sequence specificity for binding proteins
- RNAzymes, aptamers, selex
- binding of arbitrary small molecules

Structure

DNA

• mostly thought of as double helix

Protein (simple dogma)

- from a specific sequence to a well defined structure
- less often floppy, unstructured, mobile, alternative folds

RNA

- does an RNA sequence fold up to a well defined structure ?
 - all possible RNA's ?
 - biological RNA's ?
 - some RNA's ?

Structure Expectations

Protein

- usually 3D
- rarely secondary structure
 RNA
- usually secondary structure

250

Structural Data

Proteins

- 1.1×10^5 or about 3×10^4 interesting ones RNA
- 2.8×10^3 structures with some RNA
- 45 with RNA + DNA (no protein)
- 1072 with pure RNA many small and boring Determining structures
- general RNA hard to handle (RNases)
- crystallography
- NMR
 - assignments very difficult (only 4 kinds of base)

RNA structure

- 3 components
- desoxyribose (sugar)
- phosphate (PO₄)
- base (nucleotide)

RNA Bases

Are they like protein residues ?

- not classified by chemistry
- do they have interactions ?

• yes

- numbering not used much
- putting pieces together...

RNA structure

Joining the components

- adenosine 5'-monophosphate
 - not adenine, adenosine, ...

note numbering on sugar ring

09/04/2015 [11]

5' end

RNA Structure

- negative charges
- directional
 - 5' to 3'
- notation
 - always 5' to 3'

H bonding

What holds the pairs of a helix together ? H-bonds

- applies to RNA
- rules from proteins
 - H-bond donors are NH, OH
 - acceptors anything with partial –'ve

Historic H-bonding pairs...

Historic H-bonding pairs

A

Count H bonds Structures like to maximise them

Historic viewpoint

- RNA has 4 bases + GC, AU base pairs
- H-bond pairs look flat
 - not true

Other common H-bond partner

G

Contrast with DNA (GC and AT)

• almost no mismatches in DNA

RNA (GC, AU) much more interesting

- third base pair GU (rather common)
- lots of weaker pairs possible

Possible RNA structures

DNA ? nearly always similar helix

- some debate about A, B, Z, .. RNA
- lots of varieties known
- nomenclature..

tRNA 1evv 09/04/2015 [16]

RNA coordinates / nomenclature

As for proteins: PDB format

ATOM	1	05*	G A 103	58.355	47.332	91.116	1.00175.32
ATOM	2	C5*	G A 103	57.373	48.210	90.636	1.00175.32
ATOM	3	C4*	G A 103	56.962	47.802	89.224	1.00175.19
ATOM	4	04*	G A 103	58.148	47.463	88.474	1.00175.34
ATOM	5	C3*	G A 103	56.096	46.543	89.152	1.00175.03

As for proteins

- dihedral angles are useful
- Unlike proteins (φ, ψ) there are 8 $(\alpha, \beta, \gamma...)$

dihedral angle nomenclature

from Marino, JP, Schwalbe, H., Griesinger, C, Acc. Chem. Res. 32, 614-623 (1999)

dihedral angle nomenclature

8 angles

- α, β, γ, ε, ζ, χ
- 2 for sugar (P, A)
- too many for me how to simplify?

what if two angles are highly correlated ?

• if we know *x*, then *y* is probably known

ideas for classification...

Describing RNA conformation

Example approach – look for correlations

principle component analysis (quick detour if necessary)

What if sugars move in two residues ?

- energetically, would like to maintain base pairing...
- P, A move, χ will compensate
 - χ will be correlated with sugar angles

Beckers, MLM & Buydens, MC, (1998), J. Comput. Chem. 19, 695-715.

PCA reminder

I have two dimensional data

- could well be described by a first (component) and
- maybe second component
- *n*-dimensional data
- how much of variance is described by 1st, 2nd, ... components

Describing RNA structure

- Collect data for all angles
- Use principle component analysis to see what is important

Claim

• conformations are well described by just 3 angles

An alternative

• do not think in terms of classic angles

Describing RNA conformation

Alternative...

- do not work in terms of real dihedral angles
- invent reference points
- example study...
 - Duarte, CM & Pyle, AM, (1998) 284, 1465-1478

remember ramachandran plots in proteins

• can one do something similar in RNA ?

09/04/2015

[23]

Basic idea

- pick 4 atoms that are not sequential
- define a simplified backbone
 - $P-C_4-P-C_4-P-C_4-...$
- leads to "pseudo-torsion" angles

η

$$C4_{n-1}-P_n-C4_n-P_{n+1}$$

 θ

$$P_n - C4_n - P_{n+1} - C4_{n+1}$$

Plan of authors

- take 52 structures
 - (≈700 nucleotides)
 - collect η , θ
 - see if there are clusters
 - see if angles are diagnostic

Base

Base

Do you see clusters ?

- main set of points ...
- boring RNA helix
- a big claim

yes tertiary interactions

Duarte, CM & Pyle, AM, (1998) 284, 1465-1478

Duarte, CM & Pyle, AM, (1998) 284, 1465-1478

We are interested in a critical look at ideas How to read this...

- if you measure a pair of η , θ pseudo-angles
 - could you guess if something is wrong in structure ?
 - could you use this to categorise the conformation ?
- are there better ways to categorise structure ?

Summary

- RNA structure as per Watson-Crick, old text books
- How are RNA structures different to DNA ?
- What are the biological roles ?
- Can we neatly summarise RNA structures ?
 - see what information (angles) are necessary
 - define alternative angles
- Next..
 - predicting secondary structure

RNA structure, predictions

Themes

- RNA structure
 - 2D, 3D
 - structure predictions
 - energies
 - kinetics

Structure – protein vs RNA

Middle of proteins

• hydrophobic core - soup of insoluble side chains

Middle of RNA

- base-pairing / H-bonds
- much more soluble
 - if something wants to forms H-bonds, there is competition from water

Protein structure lectures are not helpful today

RNA – how important is 3D structure ?

Binding of ligands (riboswitches, ribozymes)

 totally dependent on 3D shape where functional groups are in space

What do we do ?

• mostly ignore it

How realistic is 2D ? How relevant ?

PDB acquisition code 1u9s

2D why of interest ?

- 1. computationally tractable (fügsam / machbar)
- historic belief that nucleotides are dominated by base pairs + helices (classic and wobble)

2D why of interest ?

3. Claim - RNA folds hierarchically

- secondary structure forms from bases near in sequence
- these fold up to tertiary structure

2D why of interest?

3. Claim - RNA folds hierarchically Contrary evidence in protein world

- isolated $\alpha\text{-helices}$ and $\beta\text{-strands}$ are not stable in solution

Plausible in RNA world?

• RNA double strand helices are believed to be stable

Useful ? if true

• 2D (H-bond pattern) prediction is the first step to full structure prediction
Four representations of flat RNA

+ on next slide

- write down bases on circle
- arcs (lines) may not cross

Four representations of flat RNA

- 1. conventional representation
- Same features on both plots

2. Nussinov's circle

Parentheses

- 3. parentheses most concise
 - ...((((((....))))))....(((((....)))))
- can be directly translated to picture
- easily parsed by machine (not people)

Same features in both plots

- look for long helix 57-97, bulges in long helix
- probabilities (upper right) remember for later

made with mfold server

nomenclature / features

single strand

A-form double helix

Double helix with 5'-dangling end

single nucleotide bulge

three nucleotide bulge

hairpin loop

For explanations later

- hairpin loop
- bulge (unpaired bases)

loop of 2 nucleotides

3'

Nussinov, R., Jacobson, A.B. Proc. Nati. Acad. Sci. USA, 77, 6309-6313(1980)

Burkard, M.E., Turner, D.H., Tinoco Jr., I., in The RNA World, 2nd Edn, eds Gesteland, RF, Atkins, JF Cold Spring Harbor Laboratory Press (1999)

2D – properties and limitations

Declare crossing base pairs illegal

- think of parentheses
- discussed later

What do energies depend on ? (for now)

- just the identity of the partners
- 2 or 3 types of interaction
 - GC, AU, GU

What is the best structure for a sequence?

from Nussinov, R., Jacobson, A.B. Proc. Nati. Acad. Sci. USA, 77, 6309-6313(1980)

Predicting secondary structure

How many structures are possible for *n* bases ? $cn^{3/2}d^n$

for some constants *c* and *d*

• exponential growth (d^n)

Problem can be solved

- restriction on allowed structures
- clever order of possibilities

Best 2D structure (secondary)

Scoring scheme :

• each base pair scores 1 (more complicated later)

Problem

• some set of base pairs exists – maximises score

Our approach

- what happens if we consider all hairpins ?
- what happens if we allow hairpins to split in two pieces
 ?

Philosophy

Structure is

- best set of hairpins (loops)
 - with bulges
 - loops within loops

Start by looking at scores one could have

• try extending each hairpin

hairpins / loops

Start by looking for best possible hairpin

If we know the structure of the inner loop

- we can work out the next
- If we know the black parts
- we can decide what to do with the red
 i and *j*

hairpins / loops

Important idea

- if I know the optimal inner loop try to extend it
- try to insert gaps see if score is improved

Next important point

• walk along sequence 1..*n* see if score is better with two loops

Guarantees optimal solution, but...

S(i,k)

S(k+1,j)

| 47 |

Pseudoknots

Have we considered .. ? No !

Name – pseudoknot

Do we worry?

- Stellingen no
- here ? Probably.

Pseudoknots

Pseudo-knot – not a knot

• why the name ?

Topologically like a knot

Would you expect them to occur?

picture from Zuker & Sankoff, Bull. Math. Biol. 4, 591-621 (1984), RNA secondary structures and their prediction

Pseudoknots

Given some unpaired bases, what would you expect?

- solvate?
- form more H-bonds ?
- pack bases against each other ?

Cannot (practically) be predicted

• order of steps in base-pairing methods

pseudoknots

pseudoknots

Frequency of pseudoknots?

- a few % of all H-bonds / base pairs
 Significant ?
- Significante i
- most structures will have some
- classic RNA example

pseudoknot summary

Fast algorithms cannot find pseudoknots

- in order to go fast, the algorithms work in a special order
- some base pairs come in "wrong" order
- most web servers, fast programs ignore the problem

A real limitation in the methods

How expensive are the methods?

cost of predicting structure..

The methods are not perfect. How expensive are they?

for each *i* (growing loops) test each *j* try each *k* (splitting loops)

gives $n \times n \times n = O(n^3)$

Scoring schemes – H bonds

Till now – count base pairs, but We know

- GC 3 H-bonds
- AU 2 H-bonds
- GU 2 H-bonds

Compare a structure with

- $3 \times GC$ versus $4 \times AU$
- 9 H-bonds versus 8 H-bonds

Scoring schemes – unpaired bases

Consider unpaired bases

- counted for zero before
- compare loop of 3 / 5 / ..

Do these bases

- interact with each other ? solvent ?
- energy is definitely $\neq 0$

Scoring schemes - stacking

Bad assumption: each basepair is independent

• S(i,j) = base-pair + S(i+1, j-1)

Consider all the interacting planes

• partial charges, van der Waals surfaces

Goal

- incorporate most important effects
- do not add too many parameters ... nearest neighbour model

Nearest neighbour model

Previously we added

• GC + UA + AU + ...

Now

• (GU/CA) + (UA/AU) +..

$$\begin{array}{c}
-2.2 \\
-2.2 \\
-2.2 \\
-2.2 \\
-2.2 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-1.4 \\
-$$

• terminal loop costs 5.4 kcal mol⁻¹

scoring summary

Approximation to free energies - $\Delta G_{folding}$

n base pairs	very primitive
<i>n</i> H-bonds	
loop sizes	
base-stacking	nearest neighbour model
tertiary interactions	ignored

Reliability

How accurate ?

• maybe 5 – 10 % errors in energies

How good are predictions?

• maybe 50 – 75 % of predicted base pairs are correct

Why so bad ?

Reliability – alternative structures

Think of an "A"

- wants to pair with a U
- there are many many U's

Think of any base

many possible good partners

Consider whole sequence

 there may be many structures which are almost as good (slightly sub-optimal)

Treat in terms of probabilities

Probabilities

- lower left best structure
- upper right probabilities of base-pairs

Reliability - Tertiary interactions

2D vs 3D

2g9c riboswitch

tertiary interactions from crystal

Reliability - summary

- 1. alternative structures with similar energies
- if the second best guess is the correct one
 - you will not see it
- 2. tertiary interactions are not accounted for

State-of-the-art predictors

Related sequences from other species fold the same way

Procedure

- collect closely related RNA sequences from data bank
- try to fold all simultaneously

Kinetics..

Imagine you can predict 2D structures

• are you happy ?

Two possible scenarios

- kinetic trapping
- slow formation

Kinetic trapping

Term from protein world

Wherever the molecule is

- it will probably go to energetic minimum
- less friendly landscape

How real is the problem ?

Consider base of type G

- there are many C's he could pair with
- only one is correct
- there are lots of false (local) minima on the energy landscape
Landscapes / kinetics

Can one predict these problems ?

• not with methods so far

Try with simulation methods

- Monte Carlo / time-based methods
- start with unfolded molecule
- use classic methods to get a set of low energy predictions
- simulate folding steps
 - measure amount of each good conformation with time..

Example calculation

- conformation 1 forms rapidly
- conformation 2 slowly formsenergy
 - conformation 1 disappears

Flamm, C & Hofacker, I.L., Monatsh Chem 139, 447-457 (2008) Beyond energy minimization ...

Implications

What if RNA is degraded ?

Molecule disappears before it finds best conformation

"kinetically preferred" conformations may be more relevant than best energy

summary

Tertiary structure very important (binding of ligands)

2D (secondary structure calculations)

- fast
- limits structures one can predict (no pseudoknots)
- predictions are not reliable
- used everywhere in literature (coming seminars)

You may lose anyway (kinetics)