Applications – MD / MC

Basic tools

- Force field
- MD / MC

Some application areas

- timescales
- free energy calculations
- simulated annealing
- structure refinement

Simulating dynamics (optimistic / naïve)

Claim

• protein has a hinge which must open to bind ligand

Can one see rates ?

• rates for different ligands ?

Timescales

Most common quantity τ

- time to rotate by 1 radian
- time for decay in $A(t) = A(0)e^{\frac{-t}{\tau}}$
 - relaxation time
 - characteristic time
- times in proteins...

Typical times in proteins

	Amplitude (Å)	$\log_{10} \tau(s)$
bond vibration	0.01 - 0.1	–14 to –13
rotation of surface sidechain	5 – 10	-11 to -10
protein hinge bending	1 – 20	–11 to –7
rotation of sidechain in middle of a protein	5	-4 to 0
local loss of protein structure	5 – 10	-5 to +1

Timescales, simulations, statistics

Typical big simulation $\approx 100 \text{ ns} = 10^{-7} \text{s}$

- Imagine event with characteristic time $10^{-7} \rm s~$ may or may not be seen Consider time $10^{-8} \rm \, s$
- may be seen a few times
- What you would like 100's or 1000's of observations

fast events	$ au \ll t_{simulation}$	ОК
	$ au < t_{simulation}$	poor statistics
slower events	$t pprox t_{simulation}$	no idea / very bad statistics

Previous example (drug binding)

• it is not enough to observe an event once (or few times)

Free Energy Calculations

$$k_{d} = \frac{[drug][protein]}{[drug-protein]} = \frac{[D][P]}{[DP]}$$
$$= e^{\frac{-\Delta G}{RT}}$$

Contributing terms ?

- ligand-water \rightarrow ligand + water (many interactions, ΔS)
- ligand+protein
- ligand loss of entropy / water entropy change
 - simulate ?

Infinite time – free energy estimate

 $DP \rightleftharpoons D + P$

 $\Delta G = kT \ln \frac{[D][P]}{[DP]}$

Very simple - simulate for long time

- Ligand (drug) goes on and off protein
- Look at [D], [P] and [DP] calculate ΔG directly from concentrations

Will not work – cannot simulate long enough Coming philosophy

• $DP \rightleftharpoons D + P$ is too hard, find an alternative

Free simulation for binding

If we simulate, where will the ligand go ? What is the shape of the energy landscape ?____

May take years for ligand to find protein

Short cut?

- force ligand to protein
 - artificial force + corrections
 - very difficult still requires rearranging water
 - entropy estimation very difficult

Estimating free energy differences

G = U - TSbut $S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$

- so we cannot really get *S*
- similar problem especially visiting high energy regions

Forget absolute free energies

- concentrate on ΔG
- no problem usually interesting property

Summarise free energy problem so far

- Sounds easy, just estimate [D], [P], [DP] will not work no simulation long enough
- Cheat push ligand in ? System not at equilibrium, requires work
- Chemically difficult lots of interations
 - requires completely changing water configuration
 - breaking ligand-water interactions, finding the correct ligand-protein binding
 - big change in solvent entropy, ligand entropy, protein entropy

How can one minimise the problems ?

• do an easier problem (soon)

First - small detour on work

Work and free energy changes

- work done A to B
- free energy change
 - look at either state
 - real world automatically includes entropy

state a

state b

- Work going from unbound \rightarrow bound
- ΔG_{AB}
- what is B ? what is A ?
 - more later
- measuring work?

Work and free energy

Measure the work needed to move from *A* to *B*

where \mathcal{H} is again Hamiltonian ($E_{kin} + E_{pot}$)

$$\Delta G = \int_{A}^{B} \left\langle \frac{\partial \mathcal{H}(\mathbf{p},\mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda \quad \text{or} \quad \Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$$

Binding energy - feasibility

Would this approach work ? $\langle \partial^{\mathcal{H}} / \partial_{\lambda} \rangle$ must be a good average (lots of fluctuations) must change λ slowly

Chemistry problems: your simulation would

- get averages with all water molecules
- gradually remove water molecules (high energy ?)
- find the correct binding
- get good averaging there
- states A and B are very different they must be well sampled
- intermediate (higher energy states) must also be sampled
- does not work well in practice

Paths / Energy differences (detour)

Problem – the path is too difficult – changes too big

- Energy differences depend on end states not paths
- Look at $\Delta E_{1,2} = E_1 E_2$
 - would it matter if we go $E_1 \rightarrow E_3 \rightarrow E_2$?
- Can we take even stranger paths?
- go through non existent E_4 ?
 - no problem

Same reasoning applies to free energies

Applying different paths

Originally wanted (ligand A or B, protein P)

 $A + P \leftrightarrow AP$ ΔG_A $B + P \leftrightarrow BP$? ΔG_B

If I know ΔG_{B} $\Delta \Delta G_{AB}$ is easier $\Delta \Delta G_{AB} = \Delta G_{A} - \Delta G_{B}$

 $A + P \xrightarrow{\Delta G_A} AP$

What would $\Delta \Delta G_{AB}$ mean ?

• relative binding strength

$$B + P \xrightarrow{\Delta G_B} BP$$

Alternative routes

- $\Delta G_{\rm A}$ and $\Delta G_{\rm B}$ too hard
- we would be happy with $\Delta \Delta G_{AB}$

$$\Delta G_{\rm A} + \Delta G_{\rm Y} = \Delta G_{\rm B} + \Delta G_{\rm X}$$
$$\Delta G_{\rm A} - \Delta G_{\rm B} = \Delta G_{\rm X} - \Delta G_{\rm Y} \quad \text{remember } \Delta \Delta G_{\rm AB} = \Delta G_{\rm A} - \Delta G_{\rm B}$$

So $\Delta\Delta G_{AB} = \Delta\Delta G_{XY}$

- why ΔG_X easier ?
- why $\Delta G_{\rm Y}$ easier ?

Easier free energy changes

if A/B are rather similar $AP \leftrightarrow BP$ or $B + P \leftrightarrow A + P$ (free A \leftrightarrow Bforget the protein)

are small changes – smaller than

• removing water order, removing water energy, finding protein...

Example

• small change

Fictitious states

Remember formulae

$$\Delta G = \int_{A}^{B} \left\langle \frac{\partial \mathcal{H}(\mathbf{p},\mathbf{r})}{\partial \lambda} \right\rangle_{\lambda} d\lambda \quad \text{and} \quad \Delta G = \sum_{i=0}^{N_{step}} (H_{i+1} - H_i)$$

make chemistry a function of $\,\lambda\,$

26/05/2015 [18]

λ dependence

- $\lambda = 0$ an OH group
- $\lambda = 1$ an OCH₃ group
- $\lambda = 0.5$
 - charge of H half of original charge
 - radius / size (σ , ϵ) half of real value and so on
- Atoms gradually
 - appear in one direction
 - disappear in other

Description of system is now function of $\boldsymbol{\lambda}$

λ dependent simulations

Two simulations necessary

- λ from $0.0 \leftrightarrow 1.0$ in protein
- λ from 0.0 \leftrightarrow 1.0 in water
- both from red \leftrightarrow blue
- As λ slowly moves from 0.0
- water gradually feels more/less influence of some atoms
- system should not have to rearrange itself too much

When does method work best?

- when changes are small
 - comparison of similar ligands in a protein

Summary of free energy calculations

From first principles: free energy differences, equilibria

- easy to calculate
- in practice impossible (sampling not possible)
 Forget absolute free energies
- ΔG determine most phenomena in the world Processes like binding still too difficult to simulate
- slow, too many conformations / states to visit Most calculations use $\Delta\Delta G$
- aim to get relative binding strengths

Simulated Annealing

Classic reference – in stine

Basic tools

- MC or MD
 - with control of temperature (temperature bath)
- Use : difficult optimisation problem
- chip layout
- travelling salesman problem
- protein structure
- **Optimisation problem**
- several dimensional (2 to 2 000)
- many local minima

Procedure

while $(T > T_{end})$ $T(t) = T_0 e^{-ct}$ move system (Monte Carlo)

- T_0 initial temperature is hot
- *c* is decay rate (cooling of system)
- cost function is
 - E_{pot} in chemistry
 - path length in travelling salesman
 - board cost in chip layout problem ...
- why may this work ?

Simulated Annealing concept

cooler T

r

U(**r**)

r

Properties, practical issues

Admit that there may not be a best solution

not worth spending effort between many very good solutions
 Some problems have "phase transitions"

How hot should T_0 be ?

- infinite ? No : look at barriers How slow should cooling be (*c*) ?
- system should be at equilibrium
- very slow
- Cool exponentially ?
- best first guess
- should certainly cool more slowly at transition points

Anneal with MC or MD ?

Historic use of Monte Carlo

- easiest to apply to many problems
 Use MD ?
- provides expected advantages (efficiency)
- uses available gradient / derivative information

Implementation

• Couple to temperature bath, make *T* time dependent

Use in practice ?

- simulated annealing in
 - most MD codes, refinement packages, ...

Refinement of Structures (NMR / X-ray)

- Story from first semester
- Problem : generate protein coordinates from NMR information (or X-ray)
- distance geometry gives an initial guess, but
 - distance geometry methods spread error across all distances
 - errors are spread across bonds, measured distances
 - chirality may be broken (causes distance problems)

Belief

• coordinates are not bad, but could be improved

Pseudo – energy terms

For some distance measurement *i* between some pair of atoms

- r_0 measured distance
- *r*(*t*) distance between particles at time (*t*)
- say $U_i(r) = c_i(r(t) r_0)^2$
- add this to normal force field

$$U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$$

 $U_{phys}(\mathbf{r})$ normal force field - atomistic (bonds, electrostatics...)

result?

System moves to low energy + low fake energy

• gradually moves to agree with experimental data

Practical issues $U_{tot}(\mathbf{r}) = U_{phys}(\mathbf{r}) + \sum_{i=1}^{N_{restraints}} U_i(\mathbf{r})$

 $U_i(r) = c_i (r(t) - r_0)^2$

- big *c* very artificial
- small *c* system will be slightly biased to agree with experimental data

Fake Energies - examples

Refinement of

- X-ray structures (common)
- NMR (often)
- others: microwave spectroscopy, ...

Modelling problems

- you want to put a bond in a model
 - putting it in directly
 - high energy bond
 - system stuck in minimum
 - introduce a distance restraint
 - gradually increase associated constant *c*

 \sim

Summary

What one can do with related methods

- look at timescales of motions (very superficial)
- free energy calculations important for problems such as binding of ligands
- simulated annealing methods used as minimizers, not necessarily to get an ensemble
- pseudo-(potential) energies (X-ray, NMR, ...)