Simulations / statistical mechanics / ...

Topics

- very simple stat mechanics
- Monte Carlo
- molecular dynamics

Favourite books

- "Understanding Molecular Simulation", Frenkel and Smit, Academic Press, 2002
- "Computer Simulation of Liquids", Allen & Tildesley, Oxford Science Publications, 1990

Andrew Torda, April 2016 19/04/2016 [1]

Concepts

- potential energy
- work
- entropy
- free energy

Goal

- There are models for potential energy
- for free energies we need simulations

Nomenclature

- *T* temperature
- *N* all kinds of things, usually number of particles
- k and k_B Boltzmann's constant
- R gas constant = $k N_a$
- S entropy
- F Helmholtz (NVT)
- *G* (Gibbs) free energy (NPT)
- *U* internal energy

- H enthalpy = U + pV
- E energy, E_{kin} , E_{pot} , E_{bond} , ...
- Q heat
- W work
- V volume
- Ω (x) number of states of system with property (x)
- \vec{r} or \vec{r} vectors

Potential energy

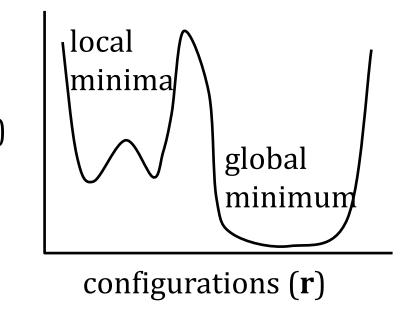
electrostatic
$$U(r) = \frac{q_1 q_2}{4\pi\epsilon_0 r}$$

gravity
$$U(r) = \frac{Gm_1m_2}{r}$$

elastic, ...

potential energy of a protein...

- where would the protein like to be?
- will be more interesting in ten minutes



Conserving energy

For this course:

- first law
- relevant energies
- is it obvious?
- when do we not conserve energy?

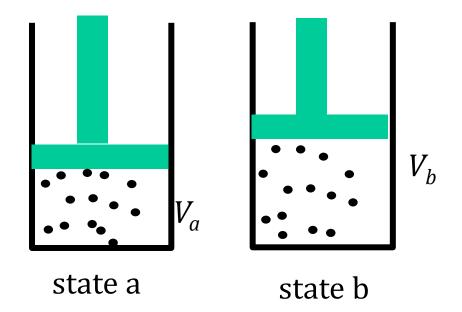
First law

- $dU = \Delta Q + \Delta W$
- *dU* change in internal energy
- ΔQ heat given to system
- ΔW work done on system
- example of work...

Work on a gas

$$\Delta W = -P\Delta V$$

$$dU = \Delta Q + \Delta W$$
$$= \Delta Q - P\Delta V$$



Others

- charges in electric fields, surface tension / area,
- we do not often do this in this course
- in one lecture: *W* will be important

Conserving energy

Newtonian dynamics coming soon

what is the energy of a particle?

$$E_{tot} = E_{pot} + E_{kin}$$

energy of a system ? (box of gas, protein in water)

$$E_{tot} = \sum_{i=1}^{N_{particles}} \left(E_{pot_i} + E_{kin_i} \right)$$

total energy is conserved – potential + kinetic

Do we always have kinetic energy?

- Monte Carlo no
- Wirkstoffentwurf-Vorlesungen no

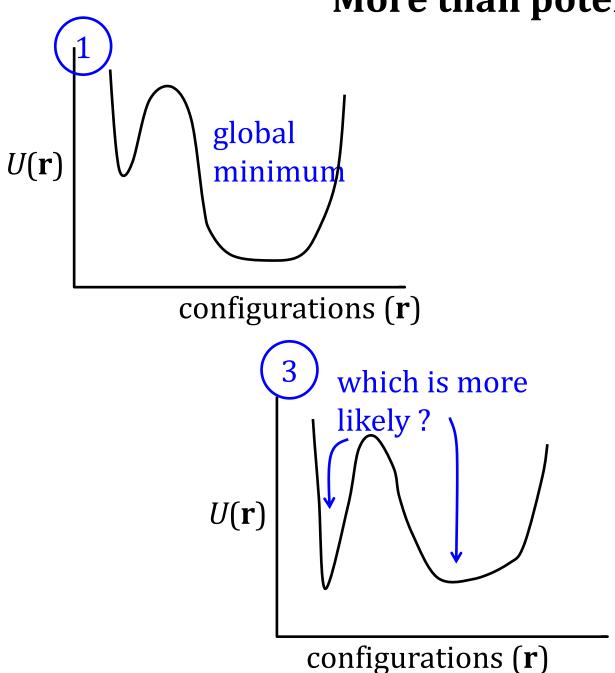
Conserving energy – always obvious?

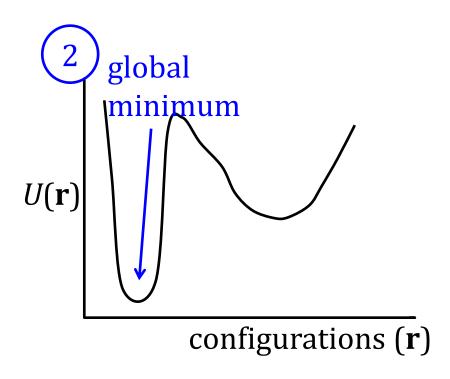
- in the real world? closed systems? yes
- almost everything in this course yes

Simulations

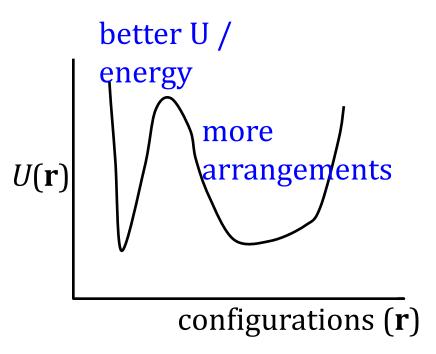
- if I want to use statistical mechanics, standard theory
 - no heating
 - no changing the force field (sounds obvious ?)
 - I want to simulate protein (un)folding
 - pull on the C-terminus illegal does work on system
 - heat system illegal
- push a drug (Medikament) into binding pocket illegal There is more than kinetic and potential energy..

More than potential energy





Simulation and formal statistical mechanics



Quantified?

- entropy and free energy
- Dumb simulation, preferring to go downhill
- should show how probabilities (entropy) are balanced against energy

History

Statistical mechanics

derived by summing up properties of individual particles

Thermodynamics

less emphasis on individual particles

Lots of formulae which cannot be completely applied to proteins

• sums over infinite volumes, numbers of particles, time

Rules and Limitations

Always at equilibrium

Entropy

- you tend to become disordered (2nd law)
- role in free energy
- formula for simple systems

Disorder, how many ways can the system arrange itself..

- depends on energy (and volume and number of particles)
- two formulae coming... simple, more useful

How many states can the system have (specified E)? $\Omega(E)$

Entropy

$$S = k \ln \Omega(E)$$

(very simple form)

Number of states $\Omega(X)$

$$T = 0$$

$$\Omega(E) = 1$$

$$S = k \ln 1 = 0$$

$$\Omega(E) = 0$$

$$T > 0$$
 small $\Omega(E) = n_{mol}$ $\Omega(E) = k \ln n_{mol}$ $\Omega(E) = k \ln n_{mol}$

A bit more energy? more states

more.. solid →liquid .. many many more

Gibbs

What if states are not equally likely?

• N_{state} states with distribution

Say
$$p_1 = 0.999$$
, $p_2 = 0.00001$, $p_3 = 0.00001$,

• just as if the system had one state - low entropy

Say
$$p_1$$
= 0.5, p_2 = 0.1, p_3 = 0.1,

- a bit more entropy, but still very much dominated by p_1 Say p_1 = 0.01, p_2 = 0.01, p_3 = 0.01,
- lots of states, all equally likely
 - lots of entropy

In general

$$S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$$

Applicability

Can one really estimate? $S = -k \sum_{i=1}^{N_{state}} p_i \ln p_i$

- liquid.. no
- protein ..no

With a simulation?

- too many states
- approximations to ΔS later

Simple system (grid / lattice)

• yes .. later in semester

Units

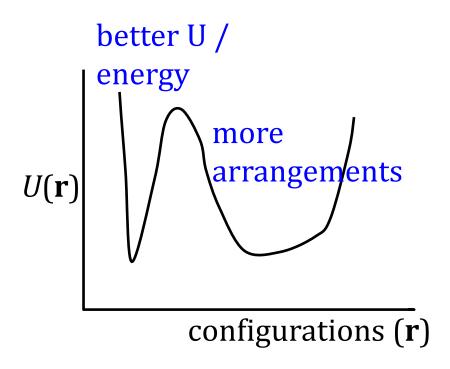
More arrangements = more entropy

Connected to energy

balance of energy and entropy

Entropy units

• energy / temp (JK⁻¹)



Where can we use this?

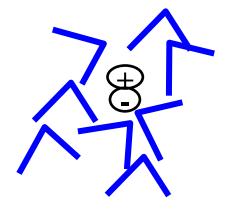
What is the entropy of a molecule?

• sounds easy

 \oplus

• really...

Entropy depends on solvent (system)



Entropy of a conformation?

has no meaning

$$S = -k \sum_{i=1}^{N_{State}} p_i \ln p_i$$

Is it additive? Only rarely – not for interesting systems

Adding entropy

Entropy is "extensive"

$$S_{AB} = -k \ln(\Omega_A \Omega_B) = -(k \ln(\Omega_A) + k \ln(\Omega_B)) = S_A + S_B$$

Assumption

• for my new system A and B do not interact

What if they interact?

• putting A in state 1 changes probability of B in state 1

$$S = -k \sum_{i=1}^{N_{State}} p_i \ln p_i$$

$$\Omega_{AB} \neq \Omega_A \Omega_B$$

Adding entropy

I cannot usually add the entropy of two systems to get the entropy of new total system

Two systems

- could be boxes (previous slide)
- could be parts of a molecule (coming)

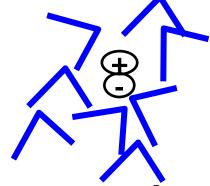
Do not add entropy terms! Exam questions (promise)

Can I decompose entropy?

May we decompose entropy?

Remember energy in proteins

$$\begin{split} E_{tot} &= E_{bonds} + E_{vdw} + E_{...} \\ S_{tot} &= S_{bonds} + S_{vdw} + ... \, ? \end{split}$$



• Makes no sense unless bonds are decoupled from atoms and angles...

$$S_{ligand} + S_{solvent} + \dots$$

• obviously do interact

Free energies

$$G_{solv}$$
, $G_{protein}$, G_{ligand} , G_{bonds} not really legal

• imagine bonds are system A, angles are system B, ..

Decomposing Free Energy

Would you see this in the literature?

Example

- in protein asp → asn mutation (COO⁻ to CON)
- protein becomes more stable

Claim:

• the protein is more stable due to a change in electrostatic free energy

What has been implicitly assumed? There is no such thing as ΔG_{el}

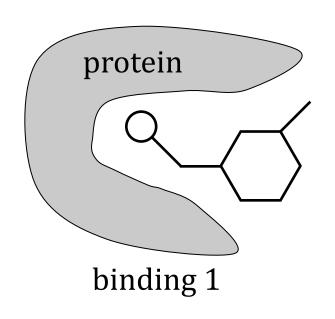
More examples - particle interactions

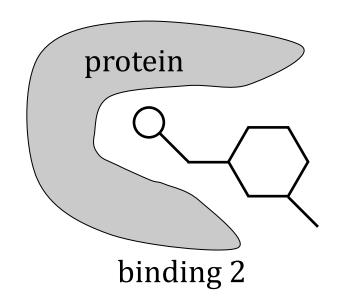
- You have a scoring function for interactions
- usually called ΔG

$$\Delta G_{tot} = \Delta G_{HB} +$$
 H-bonds $\Delta G_{ionic} + \dots$ ionic

• is this legal?

Entropy of a conformation?





Can I talk about ΔG_1 vs ΔG_2 ?

$$S = -k \ln \Omega$$

• but Ω depends on all accessible states

If binding 1 can change to binding 2, they are both part of Ω

• I do believe we can talk about U_1 and U_2

Meaning of labelled free energies

If we have "free energy contributions"

we have entropy contributions

$$\Delta G_{HB} \text{ implies } H_{HB} + T \Delta S_{HB}$$

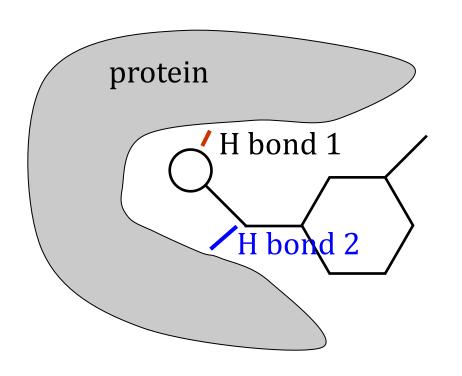
$$\Delta G_{ionic} \text{ implies } H_{ionic} + T \Delta S_{ionic}$$
 what is S_{ionic} ? $S = -k \ln \Omega_{ionic}$?

• no meaning

One cannot have "free energy contributions"

independence of terms

Even without labelled entropies



Can we add free energy due to Hbond 1 and 2?

- implies $\Delta S = \Delta S_1 + \Delta S_2$
- $-k \ln \Omega = -(k \ln \Omega_1 + k \ln \Omega_2)$
- $-k \ln \Omega = -k \ln(\Omega_1 \Omega_2)$

- only possible if there is no interaction between 1 and 2
- additivity of free energies is widely used (usually wrong)

Stop and summarise

- Internal energy U things like springs
- Enthalpy H includes pressure
- Gibbs free energy *G* what we usually use
 - no discussion of different ensembles in this course
- Free energy lets us incorporate the concept of what is most likely
- Entropy is not additive between systems (parts of systems) that interact

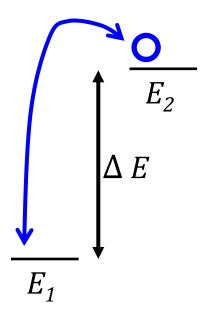
Boltzmann distribution - two states

System with two energy levels

- I know the temperature and energy difference
- How likely is system to sit in E_1 ? E_2 ?
 - System is very cold,
 - ΔE seems big
 - System is very very hot $T\rightarrow \infty$
 - ΔE does not matter, seems small
- Relative populations (probabilities) p_1, p_2
- $\Delta E = E_2 E_1$

$$\frac{p_1}{p_2} = e^{-\Delta E}/kT$$

• sometimes $\frac{p_1}{p_2} = e^{-\beta \Delta E}$



Sign conventions

$$\Delta E = E_1 - E_2 \quad \text{or } \Delta E = E_2 - E_1 \qquad ?$$

For exams

- the lower energy state is always more populated
- there are always questions about probabilities / energies
- state with most negative energy is most populated

Boltzmann distribution

What is the probability of a certain energy level?

depends on all available levels

$$p_i = \frac{e^{-\beta E_i}}{\sum_j e^{-\beta E_j}}$$

- name of bottom ... partition function, $Z = \sum_i e^{-E_i/kT}$
- does this agree with previous slide?

Consequences of Boltzmann distribution

At absolute zero

- only lowest energy state is populated
- At low temperatures
- low energy states favoured
- High temperature
- system can visit high energy regions
- Infinite temperature
- all states equally likely

For two states (bound / unbound)

• exponential term means populations quickly become big/small

$$\frac{p_1}{p_2} = e^{-\Delta E/kT}$$

How big are energy differences?

Simplest case, equal populations
$$\frac{p_1}{p_2} = e^{\frac{\Delta E}{kT}}$$

$$p_{1} = p_{2}$$

$$1 = e^{\Delta E/kT}$$

$$\ln 1 = \frac{\Delta E}{kT}$$

$$\Delta E = 0$$

$$k = 1.38 \times 10^{-23} \text{ J K}^{-1}$$
, but use

$$R = k N_A$$

= $k 6.02 \times 10^{23} \text{ J K}^{-1} \text{mol}^{-1}$
= $8.314 \text{ J K}^{-1} \text{ mol}^{-1}$

Examples of populations

$$\frac{p_1}{p_2} = e^{\frac{\Delta E}{kT}}$$

For 99:1 at 300 K

• $\Delta E = 11 \text{ kJ mol}^{-1}$

$$\ln \frac{p_1}{p_2} = \frac{\Delta E}{kT}$$

$$\Delta E = kT \ln \frac{p_1}{p_2}$$

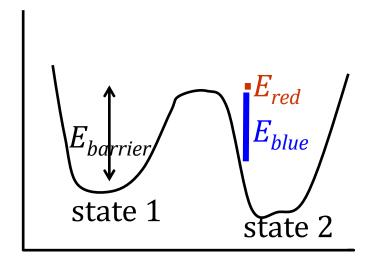
Drugs

- Dissociation constant k_d of drug D to protein P $k_d = \frac{[D][P]}{[DP]}$
- nanomolar drugs are 10^{-9} ,
- difference between 1 and 10 nm binding drug
 - 46 vs 52 kJ mol⁻¹
- topic will return later

Barrier crossing

How likely are you to cross a barrier?

• p_{red} VS p_{blue}



- all the blue copies of system will not make it over $E_{barrier}$
- red population is small, even for $E_{barrier} \sim kT$
- but explains why $ln(rate) \propto T$

where next?

- how to see some of these properties by simulating
- how simulating depends on these properties