Coarse grain models (continuous) ...

... potentials of mean force

So far?

- very detailed models
 - atomistic, solvation

What are some reasonable aims?

- given a set of coordinates
 - are these roughly correct for a protein sequence?
 - is this more likely to be α-helical or β-sheet?

Should we approach this with a detailed force field?

- maybe not-
Aims

- Why atomistic force fields / score functions are not always best
- Different levels of force fields
- Examples of coarse-grain / low-resolution force fields
- Ways to parameterise force fields
- Score functions directly from structural data

- later...
- extending this idea to lattice models
History

- through to today
Problems with detailed force fields

Time
- typical atomistic protein simulations 10^{-9} to 10^{-6} s
- too short for folding

Radius of convergence
- I have coordinates where atoms are perturbed by 1 Å
 - easy to fix – atoms move quickly
- I have completely misfolded, but well packed coordinates
 - may be difficult to fix
 - what dominates?
 - atomic packing
 - charges
 - solvation?

Do I care about details?
Coarse grain / low resolution

Forget atomic details
• build something like energy which encapsulates our ideas
• example – define a function which is happiest with
 • hydrophobic residues together
 • charged residues on outside
• would this be enough?
 • maybe / not for everything

What will I need?
• some residues like to be near each other (hydrophobic)
• residues are always some constant distance from each other
• only certain backbone angles are allowed
General implementation (easiest)

How do we represent a protein?

• decide on number of sites per residue
How do we represent a protein?

- decide on number of sites per residue
General implementation (easiest)

How do we represent a protein?

- decide on number of sites per residue
Coarse-graining (steps)

- Decide on representation
- Invent quasi-energy functions

Our plan
- step through some examples from literature

Common features
- some way to maintain basic geometry
- size
- hydrophobicity? Which residues interact with each other/solvent
Basic geometry

Survey protein data bank files and look at Cα to Cα distances

Conclusion is easy
- any model should fix $C_{i,i+1}^\alpha$ distances at 3.8 Å
- what other properties do we know?

$C_{i,i+2}$ distance / angle

- why is distance less clear?
- think of Ramachandran plot

First simple model

n residues, n interaction sites $i, i + 1$ restrained (Cβ formulation)

Overlap penalty / radii

• lys 4.3 Å, gly 2.0 Å, ... trp 5.0 Å
• $U(r_{ij})=(\text{radius}_i + \text{radius}_j)^2 - r_{ij}^2$

force hydrophilic residues to surface, for these residues

• $U^*(r_{ij}) = (100 - d_i^2)$ where
 d_i is distance to centre, 100 is arbitrary

disulfide bonds

• very strong

residue specific interactions

• $U^{long}(r_i) = c_{ij}(r_{ij}^2 - R^2)$ where c_{ij} is residue specific

• R is 10 Å for attraction, 15 Å for repulsion

residue specific part of interaction

- c_{ij} table
- features
 - hydrophobic
 - + -
 - nothing much

<table>
<thead>
<tr>
<th></th>
<th>lys</th>
<th>glu</th>
<th>...</th>
<th>gly</th>
<th>pro</th>
<th>val</th>
</tr>
</thead>
<tbody>
<tr>
<td>lys</td>
<td>25</td>
<td>-10</td>
<td></td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>glu</td>
<td>-10</td>
<td>25</td>
<td></td>
<td>0</td>
<td>0</td>
<td>10</td>
</tr>
<tr>
<td>...</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>gly</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>pro</td>
<td>0</td>
<td>0</td>
<td></td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>val</td>
<td>10</td>
<td>10</td>
<td></td>
<td>0</td>
<td>0</td>
<td>-8</td>
</tr>
</tbody>
</table>

summary
- $i,i+1$ residue-residue
- overlap
- long range
- solvation
where is physics?

- solvation?
 - term pushes some residues away from centre
- electrostatics
- hydrophobic attraction
 - by pair specific c_{ij} terms

other properties

- smooth / continuous function
- derivative with respect to coordinates
 - (good for minimisation)

does it work? what can one do?
results from first model

- try to "optimise" protein structure
- for 50 residues, maybe about 5 Å rms
 - maybe not important

Model does...
- make a hydrophobic core
- put charged and polar residues at surface
- differentiate between possible and impossible structures

Model does not reproduce
- any geometry to Å accuracy
- details of secondary structure types (not intented)
- physical pathways
- subtleties of sequence features (simplicity of c_{ij} matrix)
Improvements to simple model

Aim
• biggest improvement for least complication

Possibilities
• more points per residue
• more complicated c_{ij} matrix... (more types of interactions)
• an example weakness

Important structural features of proteins
• all proteins have hydrogen bonds at backbone
• proteins differ in their sidechain interactions..
more complicated interactions

sidechain packing

backbone Hbonds

Hbond →
3 points per residue

Hbond ←

one point residue
Scheraga model

3 points per residue

- 2 for interactions
 - p_i is peptide bond centre
 - SC_i is sidechain
- 1 for geometry
 - C^α
- $C^\alpha - C^\alpha$ fixed at 3.8 Å

Do interaction sites correspond to atoms?

Terms in Scheraga model

Total quasi energy =
• side-chain to side-chain
• side-chain to peptide
• peptide to peptide
• torsion angle γ
• bending of θ
• ...
 • bending α_{sc}
Cunning approach
- look at θ distribution
- model with Gaussians

then say

$$U(\theta)^{bend} = -RT \ln P(\theta)$$

where $P(x)$ is the probability of finding a certain x
Gaussian reminder

- get μ and σ from fitting
- angle θ depends on fitting
 \[P(\theta) = \frac{1}{\sigma \sqrt{2\pi}} \exp\left(\frac{-(\theta - \mu)^2}{2\sigma^2}\right) \]
- how would forces work?
- express θ in terms of coordinates r
- say $U(\theta)^{\text{bend}} = -RT \ln P(\theta)$
- take $\frac{dU}{d\theta} \frac{\partial}{\partial r}$
pseudo torsion term

Like atomic torsion $U(\gamma_i) = a_i \cos n\gamma_i + 1 + b_i \sin n\gamma_i + 1$

- n varies from 3 to 6 depending on types $i + 1, i + 2$
 (numbering from picture)

Three kinds of pair
- gly
- pro
- others

Net result?
- residues will be positioned so as to populate correct parts of ramachandran plot
- this model will reproduce α-helix and β-sheets
side-chain peptide

Not so important

• mostly repulsive \(U^{sc-p}(r_{sc-p}) = kr_{sc-p}^{-6} \)
• \(k \) is positive, so energy goes up as particles approach

side chain interactions

Familiar \(U(r_{ij}) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-6} \right) \)

• but, consider all the \(\sigma \) and \(\varepsilon \)
• main result
 • some side chains like each other (big \(\varepsilon \))
 • some pairs can be entirely repulsive (small \(\varepsilon \) big \(\sigma \))
 • some not important (small \(\varepsilon \) small \(\sigma \))
more complications

Real work used
• different forms for long range interactions
• cross terms in pseudo angles
What can one do?

Typical application

Background

- protein comparison lectures..
- different sequences have similar structure
 - can we test some structure for a sequence

Remember sequence + structure testing in modelling Übung?

- here
 - given some possible structures for a sequence
 - can be tested with this simple force field

What can we not do?

- physical simulations
 - think of energy barriers (not real)
 - time scale
summary of philosophy

• Is any model better than others?
• Each model represents something of interest
 • hydrophobic / hydrophilic separation
 • reasonably good quality structure with
 • real secondary structure
 • accurate geometry

Main aims
• pick the simplest model which reproduces quantity of interest

Are there bad models?
• complicated, but not effective
• interaction sites at wrong places
 • not efficient
 • not effective
Parameterisation

Problem example

- charge of an atom?
 - can be guessed, measured? - calculated from QM
- ε and σ in atomistic systems
 - can be taken from experiment (maybe)
 - adjust to reproduce something like density

What if a particle is a whole amino acid or sidechain?

- is there such a thing as
- charge?
- ε and σ?
Approaches to parameterisation

General methods
• average over more detailed force field (brief)
• optimise / adjust for properties (brief)
• potentials of mean force / knowledge based (detailed)
From detailed to coarse grain

Assume detailed model is best
• Can we derive coarse grain properties from detailed?
Examples – consider one or two sites per residue
• mass? easy – add up the mass of atoms (also boring)

Charge? not easy
• size of charge - obvious
• location?
 • not easy
 • does this let us include polarity? No.
• is this the right way to think about it?...
Averaging over details is not easy

General interaction between two residues
- will depend on orientation, distance, other neighbours
- not all orientations occur equally likely
- sensible averaging not obvious
- better approach ...
Parameterising by adjustment / optimisation

for (parameter = small; parameter < big ; parameter++)
 measure happiness

Define happiness - what do you want?
- density at equilibrium
- free energy change of some process
- distance of average protein structure from X-ray
-
cost function

For your definition of happiness

• some measured observable A_{obs}
 • density, dielectric constant, diffusion constant, ..

From simulation with parameter p

• simulate and get A_p

• unhappiness (cost) is a function of p, so we have $c(p)$

\[c(p) = |A_{obs} - A_p| \]

or maybe $c(p) = (A_{obs} - A_p)^2$

• very concrete
• each point is result from a simulation

• noise / inaccuracy, not symmetric / linear

Example p is σ in $U(r_{ij}) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-6} \right)$

we would be adjusting the size of particles
parameters optimisation – boring ? easy ?

You would not choose \(p \) values randomly or by systematic search
• (use a classic optimisation method)

Is this too easy and dull ?
• what you probably have is several parameters \(c(p_1, p_2) \)

\[
U(r_{ij}) = 4 \varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-6} \right)
\]
• measure the error/cost in 2D space
What does this tell us?

- find best ε and σ
- see that ε is critical, σ less so

Practical implementation

- systematic search? Inefficient
- automate the optimisation

Problems...
Problems with parameterisation

- scheme requires a believable measure of quality
- easy for two parameters
- possible for 3, 4 parameters
- very difficult for 100 parameters

Optimising for some properties

- you optimize for density
 - diffusion, free energy changes
 - all broken
 - you optimise based on 10 proteins
 - test of 11th - bad results (too small training set)
Different kind of score function

Change of style...

- questions on coarse-graining?
- why is entropy an issue? (numbers of particles / states)
- from nice ideas to dumb empiricism
Potentials of mean force

Potential of mean force ... knowledge based score functions

- very general
- history from atomistic simulations

Basic idea .. easy

- from radial distribution function, to something like energy..
Intuitive version of potential of mean force

Radial distribution function $g(r)$

- probability of finding a neighbour at a certain distance

What does this suggest about energy?

diagram from Allen, MP, Tildesley, DJ, Computer simulation of liquids, Oxford University Press, 1990
Radial distribution function

Formal idea
\[g(r) = \frac{N_{\text{neighbours seen}(r)}}{N_{\text{neighbours expected}(r)}} \]

\[N_{\text{expected}} = \frac{V_{\text{shell}}}{V} N \]

- \(N \) particles
- \(V \) volume
- Calculating it?
 - define a shell thickness (\(\delta r \))
 - around each particle
 - at each distance, count neighbours within shell

\[g(r) = \frac{V}{N V_{\text{shell}}} N_{\text{shell}}(r) \]
Rationale for potentials of mean force

For state i compared to some reference x

$$\frac{p_i}{p_x} = e^{\frac{-E_i}{kT}} = e^{\frac{E_x-E_i}{kT}}$$

$$\ln \frac{p_i}{p_x} = \frac{E_x-E_i}{kT}$$

$$\Delta E = kT \ln \frac{p_i}{p_x}$$
Information in distribution function

Intuitive properties?

• how likely is it that atoms get near to each other ($< \sigma$)?
• what would a crystal look like? (very ordered)
• what if interactions are
 • very strong (compared to temperature)
 • very weak
• Seems to reflect
 • strength of interactions / order
Relate this back to energy
Energy from $g(r)$

From statistical mechanics \(g(r) = e^{\frac{-w(r)}{kT}} \)

- use work \(w(r) \) for a picture moving particle by \(r \)

so strictly \(w(r) = -kT \ln g(r) \)

- already useful for looking at liquid systems

Properties

- are we looking at potential energy \(U \) or free energy \(G \) ?
 - if our results from nature / simulation – free energy

How would we get \(g(r) \)?

- experiment ? sometimes
- simulation – easy – simulate at high resolution
- soon – protein data bank

Assumptions

- our system is at equilibrium
Generalising ideas of potential of mean force

What else can we do?

- think of more interesting system (H₂O)

Would we express our function in terms of O ? H ?

- both valid

- could consider work done bringing an O to O, O to H, H to H
 - for fun on next page

More general..

- are we limited to distances? No

- example – ramachandran plot

![Ramachandran Plot]

- high probability / low energy
- low probability / high energy
radial distribution function (water)

Reformulating for our purposes

Can one use these ideas for proteins?

Our goal?

- a force field / score function for deciding if a protein is happy
- work with particles / interaction sites
- slightly different formulation
 - if I see a pair of particles close to each other,
 - is this more or less likely than random chance?
 - treat pieces of protein like a gas
 - care about types of particles (unlike simple liquid)

Let us define...
Score energy formulation

\[W_{AB}(r) = -RT \ln \left(\frac{N_{AB}^{obs}(r \pm \delta r)}{N_{AB}^{exp}(r \pm \delta r)} \right) \]

- \(N_{AB}^{obs} \): how many times do we see
 - particles of types A and B
 - distance \(r \) given some range \(\delta r \)

- \(N_{AB}^{exp} \): how often would you expect to see AB pair at \(r \) ?
 - remember Boltzmann statistics

This is not yet an energy / score function!

- it is how to build one

Intuitive version

- \(\text{Cl}^- \) and \(\text{Na}^+ \) in water like to interact (distance \(r^0 \))
- \(N_{AB}^{obs} \) is higher than random particles
- \(W_{\text{ClNa}}(r) \) is more negative at \(r^0 \)
Details of formulation

\[W_{AB}(r) = -RT \ln \left(\frac{N_{AB}^{obs}(r \pm \delta r)}{N_{AB}^{exp}(r \pm \delta r)} \right) \]

- looks easy, but what is \(N^{exp} \)?

Maybe fraction of particles is a good approximation

\[N_{AB}^{exp} = N_{all}X_{Na}X_{Cl} \quad \text{(use mole fractions)} \]

- use this idea to build a protein force field / score function
Protein score function

Arbitrarily

- define interaction sites as one per residue
 - maybe at C^α or C^β
- collect set of structures from protein data bank
- define a distance (4 Å) and range (\pm 0.5 Å)
- count how often do I see
 - gly-gly at this range, gly-ala, gly-X, X-Y ...
 - gives me N^{obs}
 - how many pairs of type gly-gly, gly-ala, gly-X, X-Y... are there ?
 - gives me N^{exp}
- repeat for 5 Å, 6 Å, ...
- resulting score function...
final score function

For every type of interaction AB (20 × 21 /2)

- set of $W_{AB}(r)$

All ingredients in place
- can we use this for simulations? not easy
- can we use to score a protein? yes

Names
- Boltzmann-based, knowledge based

Applying knowledge-based score function

Take your protein
• for every pair of residues
 • calculate $\mathrm{C}^\beta \mathrm{C}^\beta$ distance (for example)
 • look up type of residues (ala-ala, trp-ala, ...)
 • look up distance range
 • add in value from table
• what is intuitive result from a
 • a sensible protein / a misfolded protein ?
• is this a real force field ? yes
• is this like the atomistic ones ? no
 • there are no derivatives $\left(\frac{dU}{dr}\right)$
 • it is not necessarily defined for all coordinates
Practical Problems Boltzmann score functions

Do we have enough data?
- how common are Asp-Asp pairs at short distance?

How should we pick distance ranges?
How far should we look? \((r_{AB})\)?

What are my interaction sites?
- \(C^\alpha\)? \(C^\beta\)? both?

Data bias
- Can I ever find a representative set of proteins?
 - PDB is a set of proteins which have been crystallised
Reminder

- we want low-resolution score functions
- if we work in a Boltzmann framework, we work with real energies
- everything ends up as $\frac{p_i}{p_j} = e^{\frac{\Delta E}{RT}}$ or here $\Delta E = -RT \ln \frac{p_i}{p_j}$ or $\Delta E = -RT \ln \frac{N_{obs}}{N_{exp}}$
- we are comparing against what you expect from random events without interactions p_j
- work with kJ mol\(^{-1}\), we can
 - make real energetic predictions (kinetics, equilibria)
 - combine with other energy terms
Problems of Principle

Boltzmann statistics
- is the protein data bank a set of structures at equilibrium?
- Is this a potential of mean force? Think of Na, Cl example
- that is a valid PMF since we can average over the system

Energy / Free energy
- how real?

N^{exp}? how should it be calculated?
- is the fraction of amino acid a good estimate? No.
- there are well known effects. Examples

\[i, i+2 \]
\[i, i+4 \] very different statistics
Boltzmann based scores: improvements / applications

- collect data separately for \((i, i+2), (i, i+3), \ldots\)
 - problems with sparse (missing) data
- collect data on angles
- collect data from different atoms
- collect protein – small molecule data

Are these functions useful?

- not perfect, not much good for simulation
- we can take any coordinates and calculate a score
 - directly reflects how likely the coordinates are
- threading / fold recognition / model quality
Parameterising summary

- Inventing a score function / force field needs parameters
- totally invented (Crippen, Kuntz, ...)
- optimisation / systematic search
- statistics + Boltzmann distribution
Summary of low-resolution force fields

Properties
- do we always need a physical basis?
- do we need physical score (energy)?

Questions
- pick interaction sites
- pick interaction functions / tables

What is your application?
- simulation
 - reproducing a physical phenomenon (folding, binding)
- scoring coordinates

Parameterisation
- Averaging, optimisation, potentials of mean force

Next – less physical