
Sommersemester 2016, Struktur und Simulation

Übung: Calculating gradients and forces

aka “vectors, gradients and forces till you bleed”

Assignment due date: 21.4.2016

In this exercise, we will go through all the steps of deriving a expression for a force from a
potential energy function. This will involve taking some derivatives. If it’s been a long time
since you’ve calculated a derivative this might look scary, but with a little practice it shouldn’t
be too difficult. We will first repeat some things already mentioned in the lectures and try
to clear up any misunderstandings. Then we will go through some gradient calculations step
by step. Finally, there is a homework assignment where you will calculate some gradients
yourself.

Notation

A vector ~r

~r =

xy
z


has Euclidean length r

r =
√
x2 + y2 + z2

Mathematicians call the length a “norm” (there are other norms apart from the Euclidean
norm, but that’s not important here).

The unit vector r̂ (it has a length of 1) in direction ~r is given by

r̂ =
~r

r

We will use the convention ~rij = ~ri − ~rj.

Gradient of the length of a vector

Many potential energy functions are functions of distances, which means we will need the
gradient of the length of a vector later on. The gradient (∇ or ∂

∂~r
) of the Euclidean length

turns out to have the simple form:

∇r =
∂

∂~r
r =

~r

r
= r̂
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Calculating forces: harmonic bonds

Many potential energy functions are functions of distances. A simple example is the harmonic
potential for bonds. Given a harmonic bond between particles i and j, the potential energy is

U(rij) =
k

2
(rij − r0)2

where k and r0 are force constants.

As mentioned above ~rij = ~ri − ~rj.

If we want to work out the gradient ∇~riU(rij), we have to use the chain rule:

∇~riU(rij) =

(
d

drij
U(rij)

)
(∇~ri rij) = k(rij − r0)

~rij
rij

The force ~Fi acting on particle i is

~Fi = −∇~riU(rij) = −k(rij − r0)
~rij
rij

For particle j, we have

∇~rj rij = − ~rij
rij

and therefore the force ~Fj acting on particle j is

~Fj = −∇~rjU(rij) = k(rij − r0)
~rij
rij

= −~Fi

Calculating forces: angle potentials
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A more complicated energy function is the potential energy for bond angles

U(~ri, ~rj, ~rk) =
k

2
(cos θijk − cos θ0)

2

The cosine of the angle θijk is

cos θijk =
~rij · ~rkj
rij rkj

= r̂ij · r̂kj

Here we have used the dot product ~a ·~b between vectors

~a =

 a1
...
aM



~b =

 b1
...
bM


which is given by

~a ·~b =
M∑
k=1

akbk

The dot product is also called the scalar or inner product.

To calculate the gradient of the bond angle potential, we again use the chain rule:

∇~riU =

(
d

d cos θijk

k

2
(cos θijk − cos θ0)

2

)
∇~ri cos θijk = k (cos θijk − cos θ0)∇~ri cos θijk

So we are left with computing ∇~ri cos θijk. Using the definition for cos θijk from above and the
quotient rule, we get

∇~ri cos θijk = ∇~ri

~rij · ~rkj
rij rkj

=
~rkj rij rkj − ~rij · ~rkjrkj r̂ij

r2ij r
2
kj

=
1

rij
(r̂kj − (r̂ij · r̂kj) r̂ij)

Here we have used the fact that
∇~a~a ·~b = ~b

Substituting cos θijk = r̂ij · r̂kj, we get

∇~ri cos θijk =
1

rij
(r̂kj − cos θijkr̂ij)

We can do a similar calculation to get ~Fk = −∇ ~rkU , and then calculate ~Fj with the help of

~Fi + ~Fj + ~Fk = 0
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Checking gradients with the gradient theorem

As you have seen, there are many possibilities for subtle errors when calculating gradients.
The gradient theorem can help us check a gradient numerically.

Given a function U and its gradient ∇U , the line integral between any two points ~a and ~b is
equal to the difference of the function U evaluated at the endpoints:∫ ~b

~a

(∇U(~r)) · ~dr = U(~b)− U(~a)

As before, the · is a dot product.

Discretising the line integral, we get:

N∑
k=1

(∇U(~rk)) · ~∆r ≈ U(~b)− U(~a)

with

∆r =
~b− ~a
N

and

~rk = ~a+ k ~∆r

For large N , the error should become very small if we implemented the gradient ∇U correctly.

Assignment

1. For the harmonic bond potential, the force ~Fi was

~Fi = −k(rij − r0)
~rij
rij

What is the length of ~Fi ?

Hint: what is the length of
~rij
rij

?

2. Calculate the gradient ∇~riU(rij) of the Lennard-Jones potential

U(rij) = 4ε

((
σ

rij

)12

−
(
σ

rij

)6
)

Hint: use the chain rule as we did for the harmonic bond potential. This means you
only have to calculate d

drij
U(rij) and then combine it with the gradient ∇~ri ~rij the get

the final answer.
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3. Show that

∇r =
~r

r

where the vector ~r has components

~r =

xy
z


and length

r =
√
x2 + y2 + z2

Bonus assignments (optional)

1. Implement the harmonic potential (or another one if you want) and its gradient. Show
that your implementation is correct with the help of the gradient theorem, for example
for a system of three particles and two bonds (a bond between particles 1 and 2 and
another between particles 2 and 3). If you feel even more adventurous, choose another
potential such as the angle potential or the Lennard-Jones potential.

2. Show that

∇~a~a ·~b = ~b

We used this formula when we calculated the gradient for the bond angle potential.

Appendix A: Derivatives

We will write f ′(x) for d
dx
f(x) here.

The differential operator d
dx

is a linear operator. An operator in Mathematics is a function
that takes a function as input and returns a function. Being a linear operator means:

(f(x) + g(x))′ = f ′(x) + g′(x)

(af(x))′ = af ′(x)

With just a few additional rules, we can differentiate any function:

Product rule

(f(x)g(x))′ = f ′(x)g(x) + f(x)g′(x)
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Quotient rule (
f(x)

g(x)

)′
=
f ′(x)g(x)− f(x)g′(x)

g2(x)

Note: g2(x) = g(x)g(x).

Chain rule

(f(g(x)))′ = f ′(g(x))g′(x)

Some important derivatives:

Constant functions

(1)′ = 0

Derivatives of powers

(xn)′ = nxn−1

Examples :(
x1
)′

= (x)′ = 1(
x2
)′

= 2x(
x3
)′

= 3x2(
1

xn

)′
=

(
x−n
)′

= −nx−n−1(√
x
)′

= =
(
x

1
2

)′
=

1

2
x−

1
2 =

1

2
√
x(

3
√
x
)′

=
(
x

1
3

)′
=

1

3
x−

2
3 =

1

3
3
√
x2

etc.

Exponential function

(ex)′ = ex

(ax)′ =
((
elog a

)x)′
=
(
ex log a

)′
= (log a)ex log a

(2x)′ =
((
elog 2

)x)′
=
(
ex log 2

)′
= (log 2)ex log 2

etc.
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Trigonometric functions

(sin(x))′ = cos(x)

(cos(x))′ = − sin(x)

Quick self-check: (
4x3 − 7x2 + 3x− 3

)′
= ?(

1

x

)′
= ?(

4

x3

)′
= ?(

e3x
2−5x+3

)′
= ?(

cos(4x2 + 3)
)′

= ?(
5x2 + 3

sin(3x2)

)′
= ?

Appendix B: Partial derivatives

Given a function of two variables f(x, y), we can take the partial derivative with respect to x,
treating y as a constant. We write the partial derivative with respect to x as ∂

∂x
. Vice versa,

we can take the partial derivative ∂
∂y

and treat y as the variable and x as a constant.

∂
∂x

tells us how much f changes if we change x, keeping all other variables constant.

Examples:

∂

∂x

(
x2 + 3xy + 3y3

)
= 2x+ 3y

∂

∂y

(
x2 + 3xy + 3y3

)
= 3x+ 9y2

All the rules of normal derivatives (linearity, product/quotient/chain rule) apply to partial
derivatives as well.

Appendix C: Gradients

A gradient is just a vector consisting of partial derivatives. Here’s a small example:

7



Given a vector ~r

~r =

(
x
y

)
and a function f acting on that vector that returns a number (scalar)

f(~r) = f(x, y) = x2 + 3xy + 3y3

the gradient (∇ or ∂
∂~r

) is:

∂

∂~r
f(~r) = ∇f(~r) =

(
∂
∂x
f

∂
∂y
f

)
=

(
2x+ 3y
3x+ 9y2

)
So when we evaluate the gradient at a point

~r =

(
x
y

)
=

(
4
2

)
the gradient is the vector (

14
48

)
The gradient represents (locally!) the direction in which the function f increases the most,
and the negative of the gradient (the opposite direction) is the direction in which it decreases
the most.

Note: the ∇ symbol is called “nabla”. When talking about vector calculus, you pronounce
∇f as “grad f” or “del f”.

Because they are vectors of partial derivatives, all the rules of normal derivatives (linearity,
product/quotient/chain rule) apply to gradients as well.

Sometimes, we have a large vector and a function acting on it, and we only want the gradient
with respect to some of the variables.

For example, let ~r be the vector containing all x, y, z coordinates of all particles

~r =



r1,x
r1,y
r1,z

...
rn,x
rn,y
rn,z


and the vector ~ri contains the x, y, z coordinates of particle i:

~ri =

ri,xri,y
ri,z


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If we have a function U(~r) (which could be our potential energy), we could take the gradient
of U with respect to the coordinates of particle i:

∂

∂~ri
U(~r) = ∇~riU(~r) =


∂

∂ri,x
U

∂
∂ri,y

U
∂

∂ri,z
U


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