This semester

Models – mostly proteins

from detailed to more abstract models

Some simulation methods

Books

None necessary – for my group and Prof Rarey

- "Molecular Modelling: Principles and Applications" Leach, Andrew (good, not cheap)
- Essentials of Computational Chemistry: Theories and Models / Christopher J. Cramer (ebook, in library) bits of chap 2 & 3

Andrew Torda, April 2017

Grand Plan

- Models for proteins (mostly)
 - from detailed to less details
- Energies
- Dynamics

How to work with them

- simulations, calculations
 - protein folding, evolution
- What kind of model is appropriate for different problems?

Themes

- atomistiche Energie-Modelle
- Energie / Freie Energie
- Monte Carlo (MC)
- Molecular Dynamics Simulations (MD)
- Applications and Extensions of MC and MD
- Advanced Monte Carlo
- Water
- Coarse Grain / Mesoscopic / low resolution methods
- Lattice Methods
- Evolution
- Protein Folding

Organization

Im Prinzip

- 2 × Vorlesung
- 1 × Vorlesung
- 1 × Übung

In der Praxis

- 2 × Vorlesung + 2 × Vorlesung or
- 2 × Vorlesung + 2 × Übung

People

• Timur Olzhabaev (later in semester)

Zeitplan

- Mo 10:15
- Di 12:15

Sprache?

Organization

Klausurtermine in Stine (29 Juli, 25 Sep)

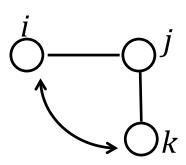
Andrew der Pedant - bei Klausuren

- energie/potenzielle energie/freie energie
- absolute Werte / relative Werte
- grossere / kleinere, mehr positiv / mehr negative
- Vektoren, Skalar
- Vorzeichnungen...

Some questions

3 bonded atoms – push atom *k* left

which atoms will feel a force?



- the conserved sites are most important
- is this true?

- a drug?
- a protein?

To be answered during the semester..

Do I have to memorise all the formula?

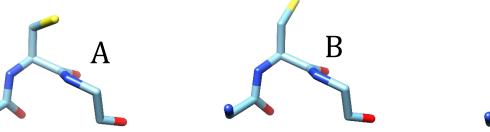
Very few

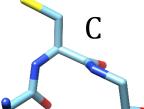
- Coulombs law
- example form of energy for bonds and angles
- Boltzmann distribution
- definition of entropy
- relationship of free and potential energy

Most other examples will be derived

Why are we here?

- observables
- distributions
- two ways to get at distributions
 - 1. from Boltzmann relation (later)
 - 2. from dynamics simulations
- dynamics simulations
 - need forces
- forces need energies


Observables

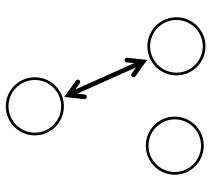

- ullet *A* is density, coordinates, something you can measure
- what you see is $\langle \mathcal{A} \rangle$ the average over time and molecules $\langle \mathcal{A} \rangle = \frac{1}{\tau} \int_0^{\tau} \mathcal{A}_t dt$
- simulating gives us a sampling over time / molecules

Can we just average over values?

- 3 rotamers in a protein
- they are not equally likely

- How to get the correct averages?
- ullet simulate the system and do the averaging over every ${\cal A}$ in the simulation
- how would you simulate?

Simulations need forces and energies


Distributions depend on energies

we need energies

• forces come from energies $F = \frac{-dU}{dr}$

So we spend weeks discussing energies

Atomistic Energy Models

Why do we need models?

- Previous lectures need for low energy configurations
 - really needs definition of energy

Can we define energy?

- for very simple systems yes
- for more complex systems
 - only approximations

Need to know when approximations are small and when bad

- are charges on atoms like fixed charges?
- are bonds like springs?

Is energy sufficient?

Does the world care about potential energy?

No. Really cares about free energy

$$G = U - TS$$
 (usually speak of ΔG)

Approach to free energy

- calculate potential energy "U" with a model
- get entropy "S" from some sampling method (often implicit)

Need good models for energy

Definitions

This topic is classical / atomistic

- often referred to as "molecular mechanics"
- quantum effects are not reproduced

Different levels of models

ab initio very detailed QM semi-empirical atomistic coarse grain continuous lattice very coarse big molecule as (colloids, single point diffusion)

Why we like atomistic models

Intuitive

how do we draw structures? store coordinates?

Atoms sometimes correspond to measurable properties

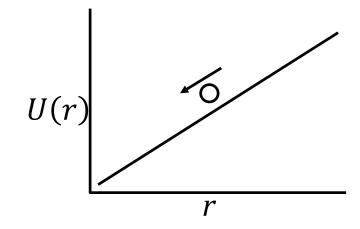
- x-ray crystallography, NMR
- predicting some dynamics
- interactions between proteins, proteins + ligands

What is a force field?

Set of equations / formulae that tell us about the force acting on a particle

Classic example

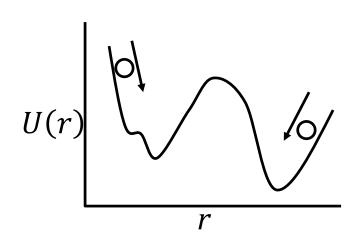
- I have charge
- bring another charge near, it feels a force due to the first
- what is the equation telling me about the energy?


$$U(r_{ij}) = \left(\frac{1}{4\pi\epsilon_0}\right) \frac{q_i q_j}{r_{ij}}$$

and the force...

Force fields, energies, derivatives

Important rule
$$\vec{F} = -\frac{dU}{d\vec{r}}$$

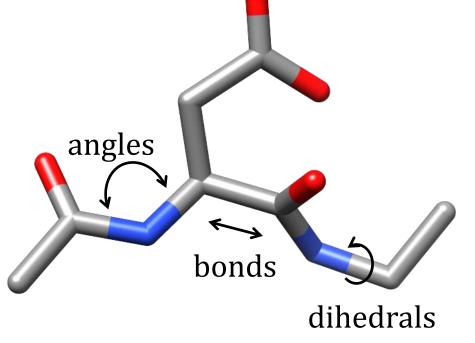

- a toy example, one dimension $U(\vec{r}) = k\vec{r}$
- force is $\vec{F} = \frac{-dU}{d\vec{r}} = -k$

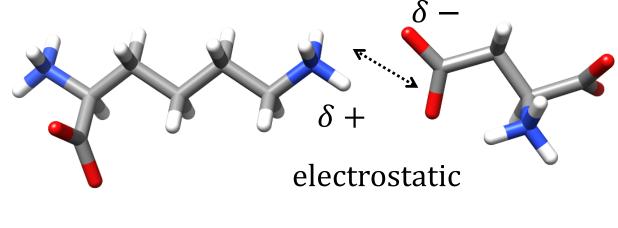
How do we want force?

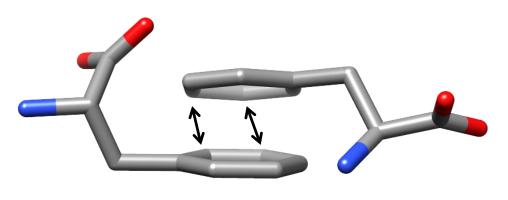
• in x, y, z terms \vec{r}

 $F_{x} = \frac{-\partial U}{\partial x}$ really $F_{y} = \frac{-\partial U}{\partial y}$ $F_{z} = \frac{-\partial U}{\partial z}$

A simple force


With an energy
$$U(r_{ij}) = \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}}$$


force is
$$\vec{F} = \frac{-dU}{d\vec{r}} = \frac{1}{4\pi\epsilon_0} \frac{q_i q_j}{r_{ij}^2} \hat{r}_{ij}$$


Rule

- if the derivative of an energy is non-zero
 - there is a force (remember for exams)

protein force field (pictures)

van der Waals

3 types of bonded energies

2 types of non-bonded energies

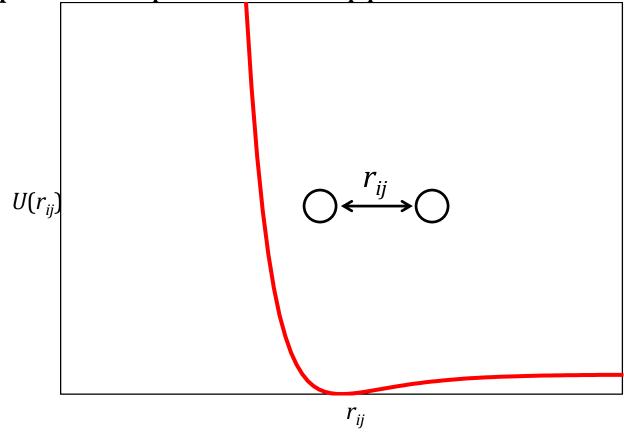
Protein force fields as equation

$$U(\{\vec{r}\}) =$$

$$\sum_{i=1}^{N_{bond}} \frac{k_i}{2} (r_i - r_{i,0})^2 \qquad \text{bonds}$$

$$+ \sum_{i=1}^{N_{angles}} \frac{k_i}{2} (\cos \theta_i - \cos \theta_{i,0})^2 \qquad \text{angles}$$

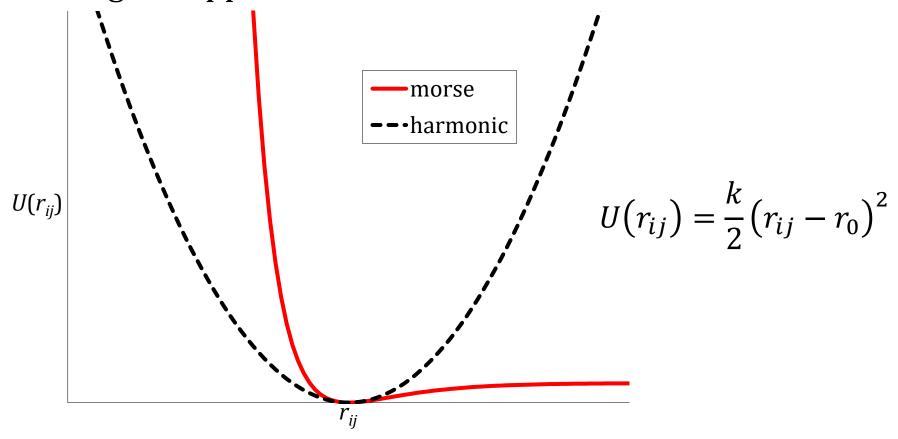
$$+ \sum_{i=1}^{N_{dihedral}} k_i (1 + \cos(n\varphi_i - \nu_{i,0})) \qquad \text{dihedrals}$$


$$+ \sum_{i=1}^{N_{atom}} \sum_{i=j+1}^{N_{atom}} \left(4\epsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^6 \right) + \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}} \right) \quad \text{non-bonded}$$

Not a bad approximation x_i is a value in the coordinates, $x_{i,0}$ is a literature reference value

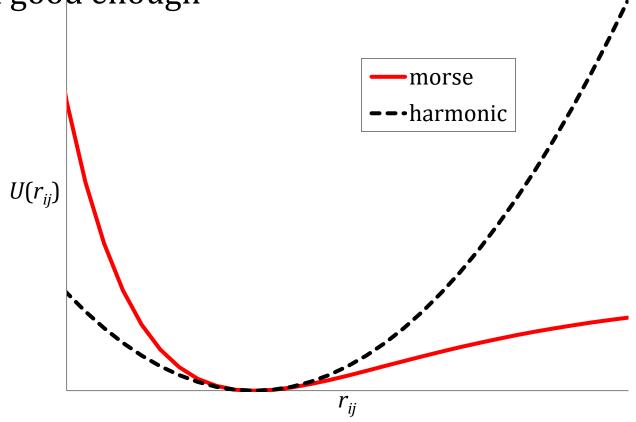
Bonds

What are bonds really?


as we pull two particles apart, what happens?

• can we approximate?

Bonds - approximate


Is the black line a good approximation?

Bonds - good enough

Bonds do not stretch much

harmonic is often good enough

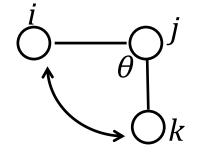
Why do we write $\frac{k}{2} (r_{ij} - r_0)^2$? (not just k)

Bonds - the end

We normally write
$$U(r_{ij}) = \frac{k}{2} (r_{ij} - r_0)^2$$

as scalar..
$$F = \frac{-dU}{dr} = -k(r - r_0)$$

so first form looks like Hookes law

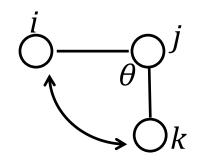

Do bonds matter?

- fluctuations very small at room temp (< 0.1 Å)
- our structures are not so accurate / we simulate to look at coarse features
- often treated as rigid joints (maybe more in MD lectures)

Angles

Angles are not as boring as bonds

$$U_{angle(\vec{r}_i, \vec{r}_j, \vec{r}_k)} = \frac{k}{2} (\cos \theta_{ijk} - \cos \theta_0)^2$$


$$U_{angle(\vec{r}_i, \vec{r}_j, \vec{r}_k)} = \frac{k}{2} (\theta_{ijk} - \theta_0)^2$$

but to get forces is messy (use chain rule) ... why?

Why are forces difficult?

We use physical models like

$$U_{angle}(\vec{r}_i, \vec{r}_j, \vec{r}_k) = \frac{k}{2} (\cos \theta_{ijk} - \cos \theta_0)^2$$

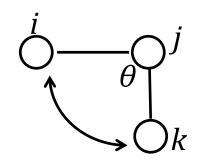
Force is obvious

- looking at picture
- in terms of $\cos \theta$
- in terms of θ ?
- we want *x*, *y*, *z*

$$\vec{F}_{angle}(\vec{r}_i) = \frac{-\partial U(\vec{r}_i)}{\partial (\vec{r}_i)}$$

$$= \frac{-\partial U(\vec{r}_i)}{\partial \cos \theta} \frac{\partial \cos \theta}{\partial (\vec{r}_i)}$$

$$= \frac{-\partial U(\vec{r_i})}{\partial \cos \theta} \frac{\partial \cos \theta}{\partial \theta} \frac{\partial \theta}{\partial (\vec{r_i})}$$


Angle forces

$$=\frac{-\partial U_{angle}(\vec{r}_i)}{\partial \vec{r}_i}$$

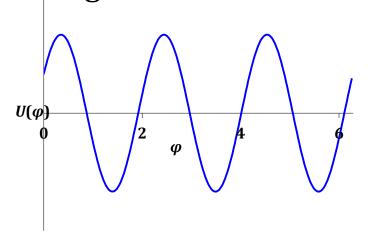
$$F_{angle_i} = \frac{-\partial U_{angle}(\vec{r}_i)}{\partial \cos \theta_{ijk}} \frac{\partial \cos \theta_{ijk}}{\partial \vec{r}_i}$$

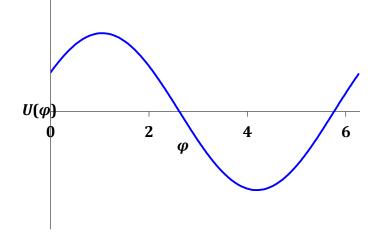
$$= k(\cos\theta_{ijk} - \cos\theta_0) \left(\frac{\vec{r}_{kj}}{r_{jk}} - \frac{\vec{r}_{ij}}{r_{ij}}\cos\theta_{ijk}\right) \frac{1}{r_{ij}}$$

The other atoms? similar expression for F_k $F_i = -(F_i + F_k)$

dihedral / torsion angles

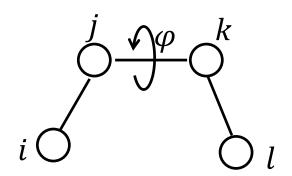
basically...

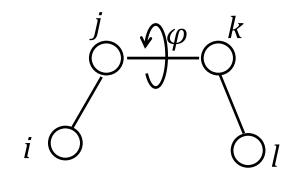

$$\frac{j}{\varphi} \stackrel{k}{\varphi} \stackrel{k}{\varphi}$$


but details will vary

- how large are energy barriers?
- how many minima are there?

Form of dihedral term


Maybe something has three minima or one minimum


What are the causes?

- do *i* and *l* interact?
- electron clouds from j and k?
- model $k_i(1 + \cos(n\varphi_i \nu_0))$

model for dihedral angles

$$U(\vec{r}) = k_i(1 + \cos(n\varphi_i - \nu_0))$$

n controls multiplicity

- n = 3 butane
- n = 2 peptide bond

At room temperature, barriers are similar to kT so

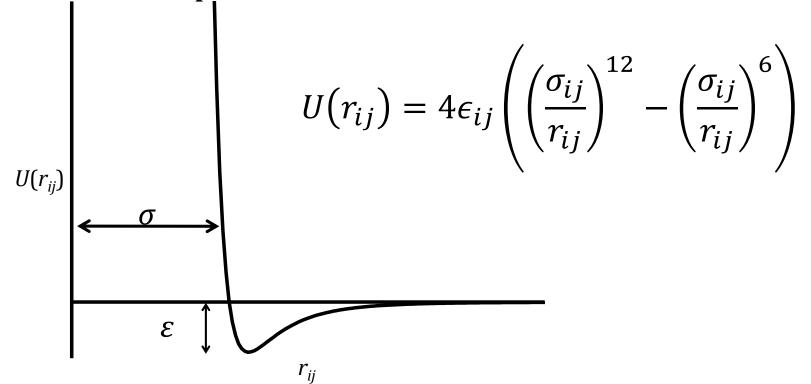
- atoms do rotate, but there are preferences (from spectroscopy)
- How good is the model? Not perfect
- some rotamers are preferred (need other terms)

What do forces look like? scary (much trigonometry)

• intuitively easy, maths messy-think of *j* and *k*

Non bonded forces

- van der Waals / Lennard-Jones / dispersion + attraction
- electrostatic


Why are they separated from others?

- bonds, angles and dihedrals
 - you know the participants in advance
- non-bonded
 - atoms can move to and from each other

van der Waals

What do we know in advance?

- "inert" gases do form liquids (atoms like each other)
- atoms do not sit on top of each other

• distance of minimum energy = $2^{1/6} \sigma$

van der Waals - how good is it?

Repulsive and attractive look similar

• quite different

$$U(r_{ij}) = 4\epsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right)$$

Attractive part?

- electrons wobble and talk to neighbours induce charges
 - r^{-6} pretty good

Repulsive part?

- what do atoms look like?
- really exponential, r^{-12} is just convenient

Lennard-Jones terms – how real

How real is it?

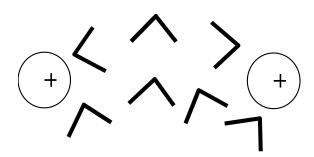
- good for liquid argon
 - diffusion, transport...
- Lennard-Jones fluids

Nice features

- ε , σ = "well depth" and size
- ε , σ specific for atom pairs
 - σ for H is tiny, for C is much bigger

Electrostatics

Coulombs law


$$U(r_{ij}) = \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}$$
 or $U(r_{ij}) = \frac{q_i q_j}{D r_{ij}}$

D is dielectric constant

Why is it difficult?

- what is *D*?
- with and without water?
- intervening protein?

$$+$$
 \leftarrow $+$

more on solvent models later

Model can be made better / worse

Is this model good or bad? fast or slow? What will it be used for?

- molecular dynamics simulations, energy minimising
 - rarely a simple energy evaluation
- cpu intensive

Conflicting goals

- make model cheaper, but maintain quality
- add details to make model better

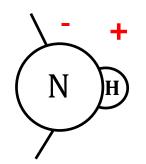
Cost of model

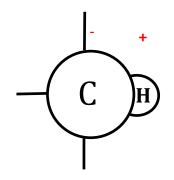
Cost of model?

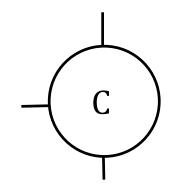
- bonds, angles, dihedrals O(n)
- non-bonded *n* particles interact with n particles $O(n^2)$
- probably $\approx 90\%$ of time spent on non-bonded interactions

Many simplifications

• some are popular and important

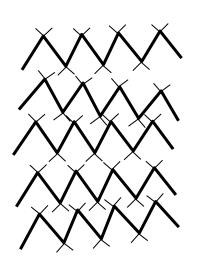

Cheaper models - United atoms / heavy atoms


When does a proton matter?


- charge interactions, H bonds When is a proton not interesting?
- most aliphatic and aromatic
- hardly a charge / tiny radius
 Do we even need the hydrogen ?
- Use a "united atom"
 - mass easy 12 + 1
 - charge? nothing
 - radius slightly larger

Rule

- use explicit H in polar groups
- absorb everywhere else
- CH, CH₂, CH₃

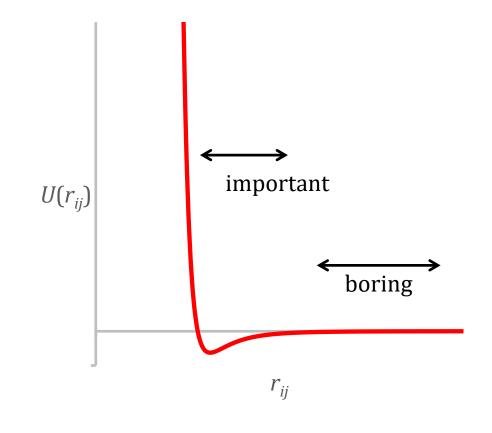

United atoms how bad?

Gain of united atoms?

- roughly halves number of atoms
- Costs?
 - dynamics? no problem
 - structure? not too bad

Problems?

- some small effects can be seen in certain systems
 - lipids
- maybe some effects in proteins


Cutoffs (cheaper models)

How important is an interaction?

- some are not interesting (bonds)
- some depend where you are

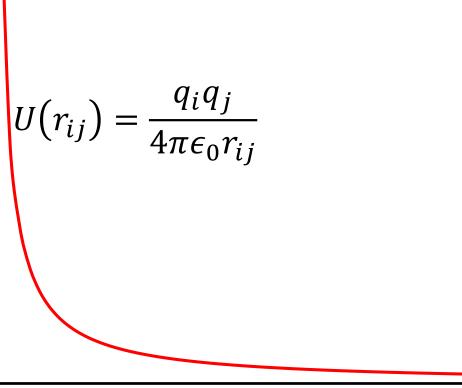
$$U(r_{ij}) = 4\epsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{6} \right)$$

- r^{-6} and r^{-12} become small quickly
- if $r_{ij} > 6$ to 8 Å, $U_{LJ}(r_{ij}) = 0$ • not a problem

more difficult.. for other terms

cutoffs - problems

Electrostatics


- r^{-1} shrinks slowly
- but eventually, we should be able to ignore
- bigger cutoff (10 15 Å)

 $U(r_{ij})$

In practice

use one cutoff for all non-bonded calculations
 Problems

• subtle – look at derivative

 r_{ij}

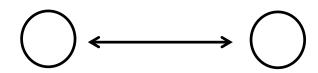
Possible improvements

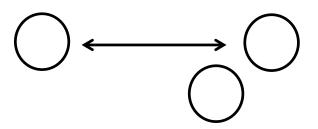
Better bonds?

- more sophisticated than harmonic $(r r_0)^2$
- can do not very interesting
- L-Jones better than r^{-12} ?
- can do not worth worrying about

Electrostatics

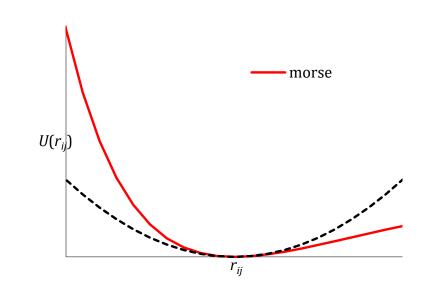
- polarisation?
 - completely lacking from model so far (fixed partial charges)
 - we know it is important
 - popular, difficult


Water


• model so far is *in vacuo* ... more later

Problems and fixes in model

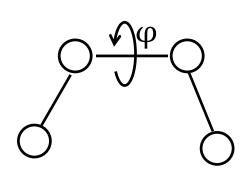
Model is fundamentally wrong


- think about forms of functions
- all two-body based, compare...

Can we represent interactions with two body form?

- can be good for a small range
- remember earlier picture...
- what works well at 300K may not work at 600K

Why problems may not be seen


Model is not perfect, why do simulations work?

- lots of parameters, not independent
- Simple example
- what controls density of a polar fluid
 - charges?
 - Lennard-Jones terms?
 - both

Complicated example

- rate of rotation...
 - torsional term (*k* in torsion term)
 - size of atoms and barriers (ε, σ) (less important)
 - angles ? (less important)

Errors in one part of force field compensated elsewhere

Testing force fields

What should a force field do?

- structure
 - simulate a protein
 - it should not blow up (necessary / not sufficient)
 - density
 - anything you can measure and calculate (distances, chemical shifts..)
- reproduce energy changes (free energies)
- global minimum (free) energy should agree with experiment
- dynamics properties
 - which torsion angles rotate at room temperature?
 - order parameters from NMR

Transferability

Perfect model of physics would work in all cases

- atomic parameters same from protein to protein
- from protein to organic molecule
- across temperature ranges?

Disappointments / difficulties

Special systems / special problems

- highly charged systems
 - DNA
 - solvent and charges
- lipids
 - repetitive nature emphasises some problems

Meaning of disappointment

- simulate a protein and it falls apart
- it implodes
- density of a system is wrong
- energetic predictions are wrong
- dynamic predictions are wrong
- smaller structural predictions are wrong

Parameters

- Force field / model has lots of parameters
- charge, mass, ε, σ,
- bondlengths, angles, ... for each type of bond / angle /dihedral
- Sources
 - literature
 - mass
 - partial charges?
 - high level calculations
 - measurements on small molecules (crystallography)
 - bond lengths, geometry
 - trial and error (example)
 - simulate a liquid
 - reduce σ to increase density
 - decrease ε to make it boil more easily

Parameters are a compromise

Model is not perfect

- internal compensation
- compromise example
 - partial charges are not really fixed
 - depend on environment + geometry
- make a decision and adjust others to work in important area

Atomistic force field summary

Model for potential energy

• proteins, organic molecules ..

Main model

- ignore water
- 3 kinds of bonded interactions
- 2 non-bonded

Conservative force field

- $U(r_{ij})$ energy depends on coordinates only
 - no time component

Energy continuous

- useful
- derivative always defined
 - very useful

more summary

- main model
- speed-ups cutoffs, united atoms
- where do parameters come from ?
- what should parameters do?
- why may you not see errors in parameters?

Where next?

- Better models (not much)
- Fixing worst aspects
- Simpler models
- Simulation
- first some rules from statistical mechanics