
Andrew Torda
Nils Petersen

Übung 3: Homology Modeling

1. Introduction

This is about building a model for a protein when you only know its sequence and using the

structure of related proteins. We use the program MODELLER. During this exercise, you will use

many skills and tools from this course such as sequence alignments, structure comparison and

Chimera. A major point of the assignment is to see how the quality of the results depends on

the initial alignments.

2. Contents

1. Introduction..1

2. Contents..1

3. What is MODELLER...2

4. Using MODELLER..2

5. Measuring Model Quality...6

6. Exercise: Modeling Ferredoxin..7

7. Your Conclusions..10

1

Zentrum für Bioinformatik
Übung zur Vorlesung

Angewandte Bioinformatik

Sommersemester 2017

3. What is MODELLER

Homology modeling in general and MODELLER in particular is based on the assumption that

similar sequences will fold up into similar 3D structures. Constructing a model for a protein

using its homology to other proteins means taking structural features from the parent

structure(s) based on sequence alignment and applying them to the sequence in question.

These features are then combined with restraints based on the sequence being modelled.

MODELLER attempts to automate the homology modeling process. It can use multiple sequence

alignments. It can also use multiple templates.

The program uses distance geometry and energy minimisation. Given a sequence and template

structure(s), it can make an alignment and decide which parts of a template structure are

probably conserved in the sequence. This alignment is used to build a set of distance restraints,

which is then used by a distance geometry routine. The initial structures are then refined by

energy minimization.

MODELLER balances the physical requirements of the modelled sequence against the geometric

relations obtained from the template structures. The code and even more information are at:

http://salilab.org/modeller/modeller.html.

4. Using MODELLER

MODELLER reads a script of instructions including run-time variables and procedural function

calls. The variables are lists of flags, or strings, and set like this:

Simplemodel.py

 from modeller.automodel import * # Load the automodel class
log.verbose() # request verbose output
env = environ() # create a new MODELLER environment

directories for input atom files
env.io.atom_files_directory = './:./atom_files'
a = automodel(env,
 alnfile = 'fdxhomologs.pir', # alignment filename

 knowns = ('1fxd', '1fdn'), # codes of the templates
 sequence = 'ferodox') # code of the target
a.auto_align() # get an automatic alignment
a.make() # do the actual homology modeling

The knowns variable is a list of structure names, and sequence is a string containing the name

of the sequence to be modelled. These names correspond to the entries for each protein in the

alignment file:

2

fdxhomologs.pir: A PIR file

A Comment
This is the .pir file entry for 1fdn
>P1;1fdn
structure:1fdn:FIRST:@:55:@:.:.:.:.
*
>P1;1fxd
structure:1fxd:FIRST:@:58:@:.:.:.:.
*
This entry doesn't get used by simplemodel.py
>P1;5fd1
structure:5fd1:FIRST:@106:@:ferredoxin:Azotobacter vinelandii: 1.90.0.92
*
>P1;ferodox
sequence:1fdx:1: :54: :ferredoxin:Peptococcus aerogenes: 2.00:-1.00
AYVINDSCIACGACKPECPVNIIQGSIYAIDADSCIDCGSCASVCPVGAPNPED*
The * indicates the end of the sequence entry

The alignment file is like a flat-file database. Each '>P1;blah' line is a tag for the protein data

called 'blah'. MODELLER looks for tags with the same names as those given in the sequence and

knowns variables defined in the .py file.

The line after a tag is a ':' separated set of fields defining the protein data. For 5fd1 the first

field is 'structure', and the next is the structure's PDB name. MODELLER uses this to search for

the protein's PDB at each of the paths defined by another runtime variable called

env.io.atom_files_directory. The next four fields are for the beginning and end residue

number and chain ID that define the stretch of coordinates which MODELLER should read. In

this case, 'FIRST:@' means the first residue in the first chain of the PDB file, and '60:@' means

the residue 60 (in PDB file numbering) in the same chain. The rest of the fields are typical

sequence database entries (the protein name, and species), and the last two are the resolution

and R factor for the X-ray structure. These are defined as a wildcard ('.') in most of the other

entries, and the extra information is not important for this example.

The 'ferodox' entry is different, because it is the sequence to be modeled. The first field is

'sequence' - indicating that there is no structure. The second is a filename that will be used if a

model is generated, and the rest give the numbering and amino acid chain code that will be

used when the model is written.

The final line(s) give sequence information for the protein, as bounded by the start and end

positions given in the fields in the previous line. Sequence entries must be in upper case, single

letter amino acid codes, where the '*' is the terminator for the sequence. Any whitespace

characters are ignored. When the 'START:@:XX:@' field is used, where XX is some number, no

sequence is necessary. However, for 'ferrodox', the amino acid sequence must be defined, and is

given as shown. It is important that there are precisely the same number of amino acids as is

given in the preceding header by the start and end amino-acid numbering (54 a.a. characters in

this case). The PIR format allows the representation of multiple alignments. A '-' character can

be used for the sequences to indicate a gap. An example of this will be shown later.

3

The alignment filename is given to MODELLER via the alnfile variable, and any extra PDB file

paths are defined in env.io.atom_files_directory - the filenames and paths are all relative

to the current working directory in this example. 'a.auto_align()' makes a multiple alignment of

all the protein sequences. This is written out as a new .pir file called fdxhomologs.pir.ali. The

final command 'a.make()' runs the automatic modeling function, which results in the following:

1. A log file is created, called simplemodel.log.

2. MODELLER reads fdxhomologs.pir, finds the unknown sequence and also reads in

the structures specified in knowns.

3. A multiple alignment of all the sequences is made and written to a new .pir file

called fdxhomologs.pir.ali.

4. The known structures are analysed based on the alignment, and used to make a

set of distance restraints.

5. A model is made by distance geometry and refined.

6. The model is written out as ferodox.B99990001.pdb.

Make a new directory and change to it by entering the following shell commands:

 cp -R /home/petersen/teaching/modeling .
 cd modeling

To run MODELLER using the python script mentioned above, we have to set up the path for

MODELLER. At first, determine which shell is set as standard for your account

 echo $SHELL

If you are using the bash shell, type

 export PATH=/home/torda/bin/modeller9.14/bin:$PATH

However, the command export does only work for the bash shell, which is enabled by default

for all student accounts. If you have changed your shell to tcsh, you need to write

 setenv PATH "/home/torda/bin/modeller9.14/bin:$PATH"

Now you can run the fully automatic modeling script file:

 mod9.14 simplemodel.py

If everything has gone well, the MODELLER command will finish after a few seconds.

Have a look at the directory listing:

 ls

It should look like:

atom files ferodox.D00000001 ferodox.rsr
 fdxhomologs.pir ferodox.V99990001 ferodox.sch

fdxhomologs.pir.ali ferodox.ini ferodox.B99990001.pdb
family.mat simplemodel.log simplemodel.py

4

The ferodox.* files are related to the modeled sequence. The others are the log file

simplemodel.log written by MODELLER, and the multiple alignment that was actually used to

generate the model (fdxhomologs.pir.ali).

fdxhomologs.pir.ali : Describing a multiple sequence alignment to match the ferodox sequence to two homologs:

>P1;1fxd
structure:1fxd:FIRST:@:58 :@:.:.: 0.00: 0.00
PIEVNDDCMACEACVEIC--PDVFEMNEEGDKAVVINP--DSD-LDCVEEAIDSCPAEAI-VRS*

>P1;1fdn
structure:1fdn:FIRST:@:55 :@:.:.: 0.00: 0.00
AYVINEACISCGACEPECPV-NAISSG-D-DRYVID-ADT-CID---CGACAGVCPVDAP-VQA*

>P1;ferodox
sequence:1fdx:1 : :54 : :ferredoxin:Peptococcus aerogenes: 2.00:-1.00
AYVINDSCIACGACKPECPV-NIIQ----GSIYAIDADS--CID---CGSCASVCPVGAPNPED*

The alignment also yields a distance matrix: family.mat: This is the 'distance' between each

sequence, as defined by MODELLER's own multiple alignment (the multiple sequence alignment

is shown in the .pir.ali file).

The most important files are the generated coordinates:

ferodox.B99990001.pdb: The PDB coordinates for the model. The 9999 indicates that the

coordinates are modelled rather than 'measured', and 0001 indicate that this is model number

1. In addition to 'ATOM' records, there are two informational entries in the file:

EXPDTA THEORETICAL MODEL, MODELLER 9v5 2012/01/....
REMARK 6 MODELLER OBJECTIVE FUNCTION: 1380.0945

The REMARK line gives the objective function for the model (the lower the better). This value

is not an absolute measure and can only be used to rank models calculated from the

same alignment. The rest of the files give detailed output from the steps of model

construction and minimization.

ferodox.ini: The initial model generated by distance geometry.

ferodox.rsr: The restraints applied to the atoms in the model, during construction and

minimization. It lists pairs of atoms and the ideal distances.

ferodox.sch: The energy function schedule used in the optimization.

ferodox.V99990001: Heavy atom violations' for each residue.

ferodox.D00000001: The progress of optimization from model 0 (ferodox.ini) to model 1

(ferodox.B99990001.pdb).

That was a very simple example. In the next section, we see how one can use better alignments

from outside the MODELLER program to make better models.

5

5. Measuring Model Quality

The protein sequence used in this exercise is from a known structure (PDB ID 1dur), so it is

possible to determine if a model is good or bad simply by comparing it to the real protein

structure. You can download the structure on the pdb-website (www.rcsb.org). Search for 1dur

and click on “Download Files” and choose “PDB-Format”. In a real homology modeling

experiment, the true structure is not known, so it is necessary to use tools for analyzing the

quality of the models. Such a measurement of model quality can be based on physical energy

functions - which give a measure of structural quality, but it can be hard to estimate the

absolute quality with these. The alternative is to assess the backbone conformations and side-

chain packing using statistical observations of the typical geometry of proteins (knowledge

based energy functions). One of these protein structure validation programs, called ERRAT, will

be used in this exercise. The program examines a PDB file, and generates a score based on the

quality of the local structure surrounding each residue, as compared to the typical ranges of

dihedral angles and side chain contacts observed in real proteins. You can find the webserver

for the program at:

http://services.mbi.ucla.edu/ERRAT/

To use the server, upload your PDB file using the web form. The program generates a plot which

gives a measure of the structure error at each residue in the protein. It also calculates an

overall score for the structural quality. You can read more information about the method by

following the links on the ERRAT server page. Figure 1 shows two ERRAT assessments - one for

the model generated by the simplemodel.py script, and along side it is the plot for the real

structure for the sequence. The overall measure of quality is given at the top of the plot and

each bar in the histogram is shaded according to the significance of the local structural error.

Figure 1. ERRAT output for the Ferredoxin structure and model.

The validation plot for the real structure (PDB code 1dur) is on the left, and the

6

model generated by MODELLER is on the right. The overall quality factor is given

just above the plot of structure error.

6. Exercise: Modeling Ferredoxin

In this exercise, you will reproduce the ferredoxin model and structural quality analysis which

were described in the last two sections. You will then try to generate a better model by

modifying the alignment. This will involve making a multiple sequence alignment with a variety

of sequences and gap penalties, in order to get a better mapping of the sequence on to the

template structures. The quality should be described by the ERRAT plot, its overall quality

measurement, and the MODELLER objective function value.

If you have followed all the steps described, and sent ferodox.B99990001.pdb to ERRAT server,

you should get a result which is similar to the right one on figure 1. Save it as a .jpg or

postscript file.

Examine the generated model (ferodox.B99990001.pdb), its ERRAT plot, and the alignment file

(fdxhomologs.pir.ali). This shows the parts of the other ferredoxin structures which were used

to make the model. Comment on the quality, using these aspects as a guide:

Open the PDB-files of your modelled structures as well as the reference structure (1DUR) in

chimera (found at /usr/local/zbhtools/chimera/1.9/bin/chimera). Use chimera to structurally

align your model with 1DUR:

Tools -> Structure Comparison -> MatchMaker

Find the residues that are badly modelled (grey or black in histogram) according to ERRAT.

See if these are α–helical, β-sheet or not regular structure.

Are the poorly modelled regions the result of gaps or insertions?

7

Making a better alignment

Use the EMBNet ClustalW web form to make an alignment between the ferodox sequence, and

the two templates (1fxd and 1fdn):

http://www.ch.embnet.org/software/ClustalW.html

1. Make a copy of the fdxhomologs.pir.ali file

> cp fdxhomologs.pir.ali clustalM.pir

and open clustalM.pir with a text editor (e.g. kate, kwrite).

2. Remove any '-' symbols from the sequence entries.

3. Change the tag of the ferodox entry to ferodoxM.

4. Save clustalM.pir as you will use it again later.

5. Paste the content of file into the form. Change the output format to 'PIR' but

leave the alignment parameters at their defaults (BLOSUM matrix, 10 for gap

opening and end gap penalties, and 0.05 for extension).

6. Select the 'RunClustalW' button to make the alignment.

7. The PIR file will be presented shortly, as a link ('PIR') amongst a number of links

to other alignment file formats. Save the file as fdxCWM.pir.

8. Edit the new alignment so it can be used by MODELLER:

- Copy the ':' separated fields line for each protein into the new alignments so

 that MODELLER can match the structure files to the sequence entries.

- Save it.

9. Make a copy of simplemodel.py, called cwMmodel.py. Edit this new .py file so it

will read the ClustalW alignment and make a new model:

- Change the alnfile variable:

alnfile = 'fdxCWM.pir'

 alnfile is the variable that defines the filename for an alignment that is to be

 used by the modeling routine.

- Change the sequence variable assignment so that sequence is set to

 ferodoxM. This is the tag that you used in the FASTA file you submitted to

 ClustalW.

- Comment out "a.auto_align()" by putting a hash (#) at the start of that line.

- Save the updated file.

10. Run the MODELLER script with cwMmodel.py. It should finish in about a minute.

The new model will be called 'ferodoxM', after the tag used in the new PIR file.

11. Send ferodoxM.B9990001.pdb to ERRAT and save the plot as ferodoxM.ps or

ferodoxM.jpg. Note which parts of the model have been improved due to the

more accurate alignment.

12. Use Chimera to compare your model with the reference structure (1DUR).

8

Adding more homologs to the multiple alignment

The two template sequences are reasonably good homologs for the sequence that you are

modeling, but they are not the only ones that could be used. Open the file fdxfamily.pir.

You will see some additional members of the feredoxin family.

1. Use these extra sequences together with the sequences in the file clustalM.pir

as input to ClustalW and submit them to the server using the same gap penalties

as in the last section.

2. Save the new, wider multiple sequence alignment as fdxCWW.pir.

3. Examine the files fdxhomologs.pir and fdxfamily.pir to find the tags and extra

information fields needed to complete the entries in your new alignment.

4. Modify your Python script (cwMmodel.py) again for this new alignment. First add

the new sequences to 'knowns' within the brackets of the 'automodel' call. Then

include the following lines before the call 'a.make'.

a.starting_model = 2

a.ending_model = 2

These statements set the first and last 'model number' for the generated models.

By default, MODELLER makes one model. If the variables above are defined, then

MODELLER starts with the given number and builds multiple models until the

given index for the end is reached. Here, only one model is built, but the

output files will be named with number 2 (e.g. ferodoxM.B99990002.pdb), thus

we do not overwrite our existing files.

6. Generate the new model and assess its quality.

Finding better gap penalties

Repeat the multiple sequence alignment and model generation that you did in the last section,

but play with the following alignment parameters:

BLOSUM matrix (unchanged)

Gap Opening and End Gap = 1 or 90

Extension and Separation = 0.05

Remember to save this alignment as a PIR file under a new name, and add the extra tag lines.

You also need to modify your cwMmodel script so that it uses this new alignment file rather

than fdxCWM.pir, and assign 3 to the a.starting_model and a.ending_model.

9

7. Your Conclusions

a) Summarize in a few sentences what you have been doing during this exercise: What

have you investigated? Which tools did you use to generate the alignments, the homology

models and the measurement of model quality?

b) How can a model of a protein's structure be generated by using its homology to some

known structures?

c) Why does ERRAT not need to know any template structures in order to estimate the

quality of your model?

d) Look at your results: Are high/low quality regions of your models associated with certain

secondary structure elements or high/low sequence similarity? If there is a poor region

in the model structure, try to give a reason for it.

e) What is the meaning of the MODELLER objective function value?

f) How did the results change with different alignment parameters? Why does the quality

of the calculated structures depend on the alignment’s quality? Which alignment was

most effective for obtaining a good model? Why?

Please answer these questions. We will discuss them next week (on July 10, 2017).

10

	1. Introduction
	2. Contents
	3. What is MODELLER
	4. Using MODELLER
	5. Measuring Model Quality
	6. Exercise: Modeling Ferredoxin
	7. Your Conclusions

