Water models / solvation

Biggest effects of water

- electrostatic
- dynamic

Model types

- explicit
- implicit

Dynamic effects of water...

Andrew Torda, June 2018 strukt & sim 24/10/2018 [1]

Dynamic effects of water

one lonely moving particle

- initial velocity \dot{x}_t
- future velocity easy $\dot{x}_{t+\delta t} = \dot{x}_t$
- energy? constant $\frac{m \dot{x}^2}{2}$

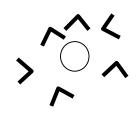
two particles? interacting?

- future velocity a bit more difficult
- easily bounded cannot be more than $\frac{m_1\dot{x}_1^2 + m_2\dot{x}_2^2}{2}$

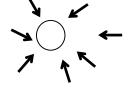
one particle in water...

Velocities of particles in water

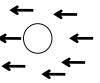
Lots of random interactions



A small acceleration?



A big acceleration?

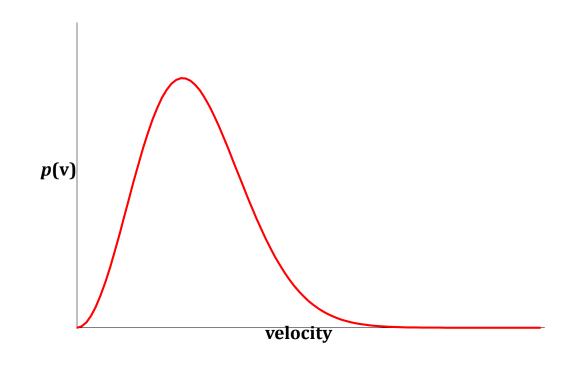


A probability distribution

+

how does \dot{x}_t tell us about $\dot{x}_{t+\delta t}$?

much less



Modelling dynamic effects

Summary

- solvent will add fluctuations
- particles forget their velocity faster

Can this be modelled?

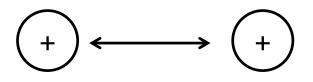
- yes (in molecular dynamics simulations)
- not really a force field / energy topic
- add random fluctuations to velocities
- can be made to look like water

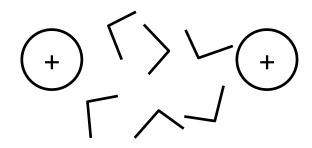
Electrostatic effects of water

water molecules

- not charged
- polar

Interaction between charges very different if water in between



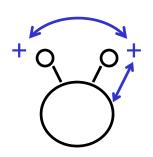


details soon

Explicit water

Earlier descriptions of proteins

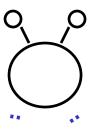
- a set of connected atoms
- extend to include water
- What does water look like?



- flexible angle
- stretchy bond
- charges

What else has it got?

- think about electron pairs on "O"
- what is really important?



Important features of a water model

Do we care about water internal dynamics? (bonds and angle)

- usually not
 - make bonds rigid
 - make angle rigid
 - treat as a bond

Dimensions

- protons are really small
- does water geometry matter?
 - usually not

most important

Final result..

SPC - A useful explicit water model

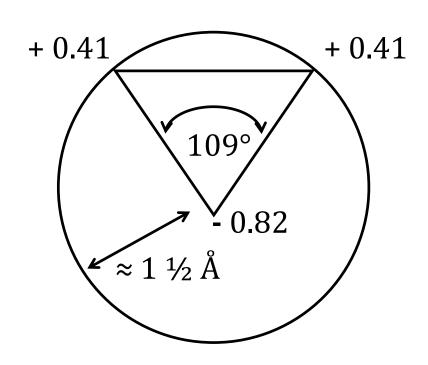
- 3 charges
- 1 Lennard-Jones radius
- 3 masses why?
 - only for molecular dynamics
- 3 bonds (completely rigid)
- Name "SPC", simple point charge

What can it do?

- diffusion, density, compressibility, heat capacity
- dielectric constant
- solvation energies?

Perfect? No

• add polarisation, offset charge from mass, ...



Explicit water + protein

Protein-water interactions

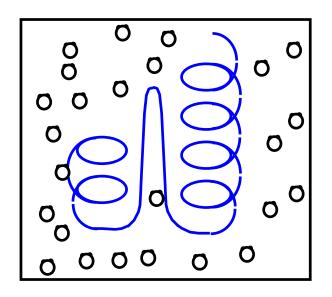
- via charge
- via Lennard-Jones term $(r^{-12} \text{ and } r^{-6})$

Elegant / Simple - automatically incorporates

- dynamic effects
- electrostatics

Problems

- very expensive
- typical simulation 10³ protein atoms
- 10⁴ solvent atoms



worst case for proteins + water

Imagine a world with no cutoffs for interactions

- scales as $O(n^2)$
- adding water gives 5 or 10 times as many atoms
- takes 25 or 100 times as much CPU time

Even worse

proteins move more slowly in water (viscosity)

What to do?

look for cheaper model

Cheaper water models

Do we really need dynamic effects of water?

- maybe not
 - only want energies
 - only care about structures

or

model with a random force

Then look for model which gets most essential aspects of water

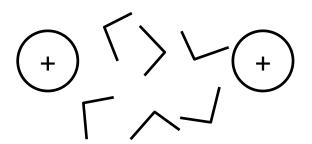
- electrostatics
 - distance-dependent dielectric
 - reaction field
 - surface area methods

Distance-dependent idea

$$U(r_{ij}) = \left(\frac{1}{4\pi\epsilon_0}\right) \frac{q_i q_j}{r_{ij}}$$

$$= \frac{q_i q_j}{q_i q_j}$$

With solvent,
$$U(r_{ij})$$
 changes less than $\frac{q_i q_j}{D r_{ij}}$



Net effect?

- water is very polar and tends to orient itself around charges
- as if the water "screened" the charges (makes them smaller)

Distance-dependent dielectric implementation

Invent approximation $D_{eff} = r_{ij}$ then

$$U(r_{ij}) \approx \frac{q_i q_j}{D_{eff} r_{ij}} \approx \frac{q_i q_j}{r_{ij}^2}$$

Is this physics?

• no

Does it work?

- a bit (ugly)
- little real physical basis
- water does not behave so simply
- fundamental problem...

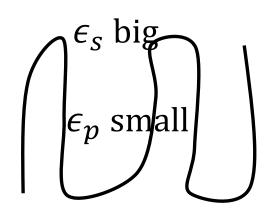
Fundamental problem with distance-dependent D

If we rely on distance-dependent dielectric constant

• assume one 'fix' works everywhere (not true)

Think of formula
$$U(r_{ij}) = \frac{q_i q_j}{4\pi\epsilon_0 r_{ij}}$$

Model will differ on big and small proteins

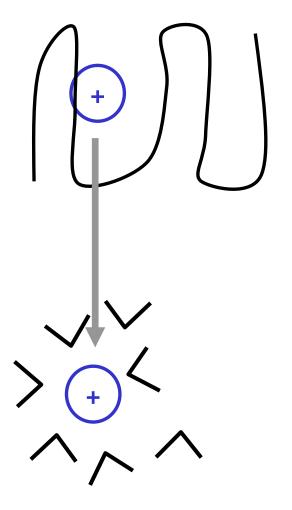


Reaction field idea

Different problem to before

- charge in a protein (lots of neutral CH groups)
 - not much happens
- particle in water
 - what does the water do?
 - tends to orient
 - lots of q^+q^- interactions
 - much better energy
 - is this like a force?
 - yes, think $\frac{-dU}{dr}$

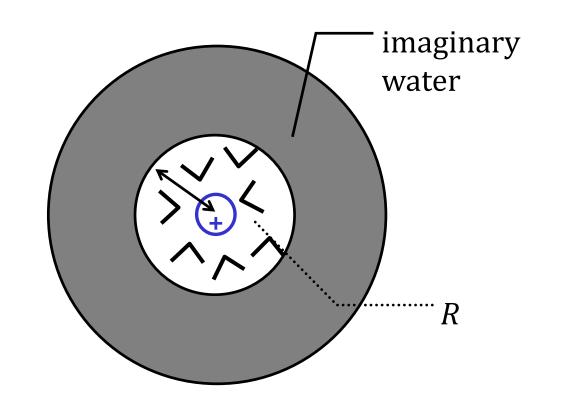
Can this be modelled?

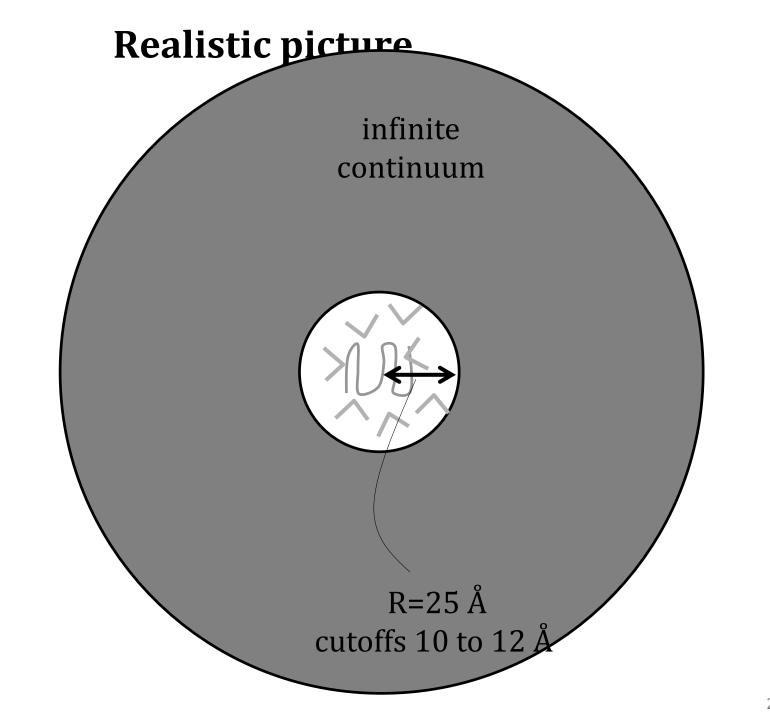


interaction with imaginary solvent

Think of particle interacting with distant water molecules

- our charge interacts with them all but
 - if they are far away (big R) less important
 - depends on dielectric constant
 - inside white region ε_r and
 - grey region ε_s
- within white region
 - treat atoms with a correction
- grey region
 - treat as continuum





Reaction field / image charge formula

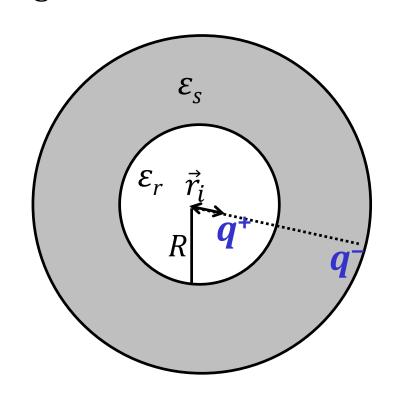
As if we interact with an "image" charge

• size
$$q_{im} = -\frac{\epsilon_s - \epsilon_r}{\epsilon_s + \epsilon_r} \frac{q_i R}{r_i}$$

- location $\left(\frac{R}{r_i}\right)^2 \vec{r_i}$
- near middle
 - $R \gg r_i$
 - image far away
- near boundary
 - imaginary solvent important
 - strong (favourable) interaction

Important result

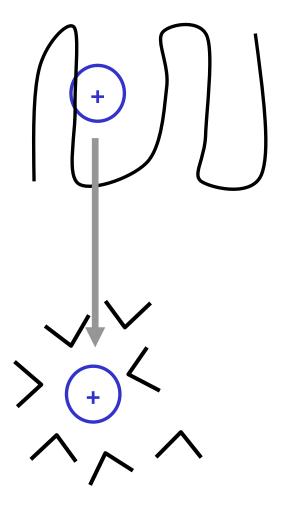
- we have modelled the happiness of a charge in solution
- charges happiest on outside of protein



Entertainment - why is this cheating?

Newtons 3rd law

- there is a force on the +
- what is broken



Simpler ways to model solvent

Problem with real physics

- if you use this model, you are obliged to use
 - real charges, real coordinates...
- parameters not perfect
- hard to rationalise repairs

Many effects simultaneously

- charges interacting with water dipoles
- loss of water water interactions
- change of solvent entropy
- change of solute entropy?

Different approach

less rigorous models

Basis of quick water model

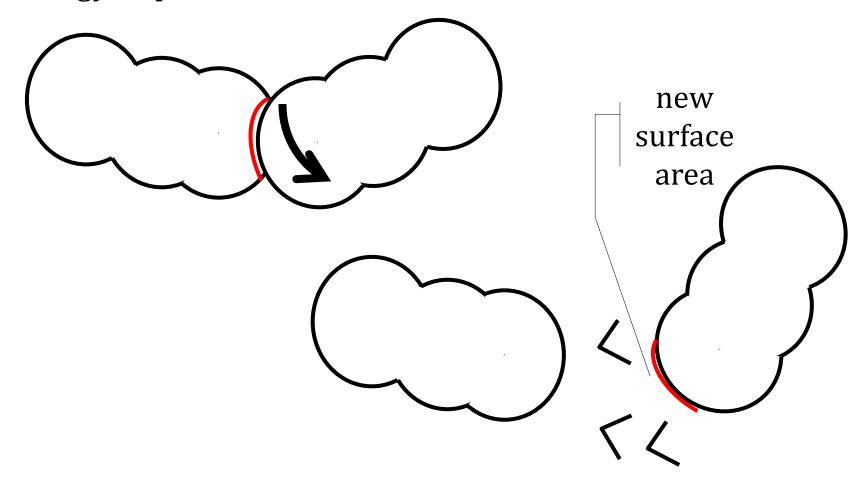
Philosophy

- I can not model water properly
- find a very general way to incorporate effects
- Water makes some atoms happy
- Others do not care too much
- Find some very general way to include water effects
 - whether they are favourable / unfavourable
- what is easiest way to think about water influence?

Atomic surface area

Simple model

• for each atom, energy depends on surface area



Formalising SASA model

- Solvent accessible surface area (SASA)
- for every atom, i $G_i^{solv}(\vec{r}_i) = \gamma_i A_i(\vec{r}_i)$
- *G* because we no longer have a pure potential energy
- $G_i^{solv}(\vec{r}_i)$ because the energy term depends on coordinates
- γ_i is a specific parameter for each kind of atom
 - for O, N will be negative
 - for CH, CH₂, CH₃ will be positive or near zero
- area, *A*_i, has to be calculated

Problems

- *A_i* is difficult to calculate
 - use approximation
- γ_i not easy to estimate

Example SASA calculation

- classical atomistic force field
- distance-dependent dielectric
- two γ_i parameters, $\gamma_{C,S} = 0.012$ and $\gamma_{O,N} = -0.060$ kcal mol⁻¹

Results

- better than in vacuo
 - deviation from known structure during simulation
 - not too many H-bonds formed
 - radius of gyration ? (how big is protein)
- why do they appear OK? why only two γ_i ?
 - not tested in detail
 - worst problems fixed

context

Who uses what?

- MD simulations
 - explicit water (very common)
 - reaction field
 - more complicated (long range periodicity)
- Drug design
 - occasionally do full MD simulations / free energy estimations / λ perturbation
 - fast screening
 - crude approximations

summary

- Have not discussed dynamic effects of water
- Explicit water is best, but very expensive
- distance-dependent dielectric +
 - SASA style models
 - complementary
- many variations
 - surface accessible volume
 - more γ_i parameters
 - add in reaction field for better long range electrostatics
- changes and flaws in one parameter are hidden by others

Coarse grain models (continuous) ... potentials of mean force

So far?

- very detailed models
 - atomistic, solvation

What are some reasonable aims?

- given a set of coordinates
 - are these roughly correct for a protein sequence?
 - is this more likely to be α -helical or β -sheet ?

Should we approach this with a detailed force field?

maybe not-

Aims

- Why atomistic force fields / score functions are not always best
- Different levels of force fields
- Examples of coarse-grain / low-resolution force fields
- Ways to parameterise force fields
- Score functions directly from structural data
- later...
- extending this idea to lattice models

History

History

- Levitt, M and Warshel, A, Nature, 253, 694-698, Computer simulation of protein folding (1975)
- Kuntz, ID, Crippen, GM, Kollman, PA and Kimelman, D, J. Mol. Biol, 106, 983-994, Calculation of protein tertiary structure (1976)
- Levitt, M, J. Mol. Biol, 104, 59-107, A simplified representation of protein conformations for rapid simulation of protein folding (1976)
- through to today

Problems with detailed force fields

Time

- typical atomistic protein simulations 10⁻⁹ to 10⁻⁶ s
- too short for folding
- Radius of convergence
- I have coordinates where atoms are perturbed by 1 Å
 - easy to fix atoms move quickly
- I have completely misfolded, but well packed coordinates
 - may be difficult to fix
 - what dominates?
 - atomic packing
 - charges
 - solvation?

Do I care about details?

Coarse grain / low resolution

Forget atomic details

- build something like energy which encapsulates our ideas
- example define a function which is happiest with
 - hydrophobic residues together
 - charged residues on outside
- would this be enough?
 - maybe / not for everything

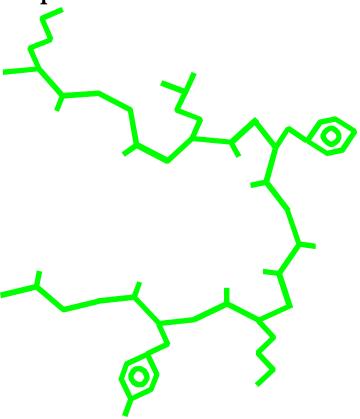
What will I need?

- some residues like to be near each other (hydrophobic)
- residues are always some constant distance from each other
- only certain backbone angles are allowed

General implementation (easiest)

How do we represent a protein?

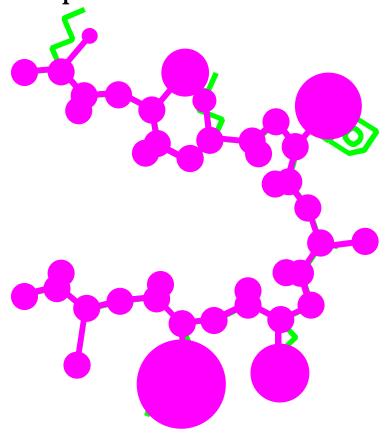
• decide on number of sites per residue



General implementation (easiest)

How do we represent a protein?

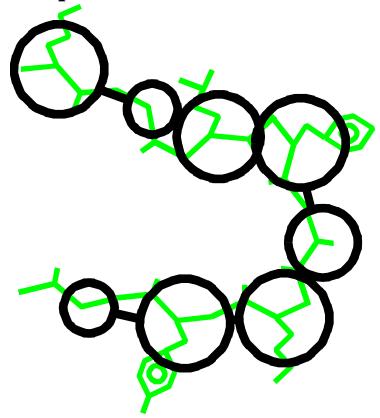
• decide on number of sites per residue



General implementation (easiest)

How do we represent a protein?

• decide on number of sites per residue



Coarse-graining (steps)

- Decide on representation
- Invent quasi-energy functions

Our plan

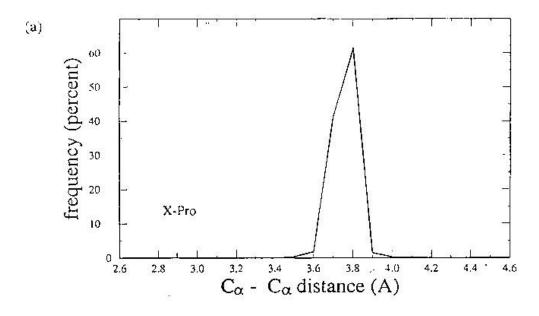
step through some examples from literature

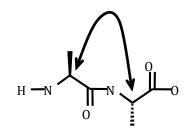
Common features

- some way to maintain basic geometry
- size
- hydrophobicity? Which residues interact with each other/solvent

Basic geometry

Survey protein data bank files and look at $C\alpha$ to $C\alpha$ distances

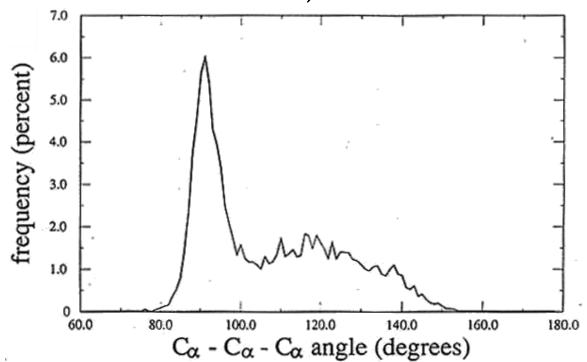




Conclusion is easy

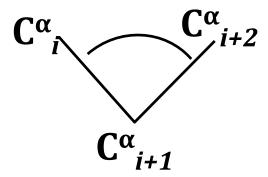
- any model should fix $C_{i,i+1}^{\alpha}$ distances at 3.8 Å
- what other properties do we know?

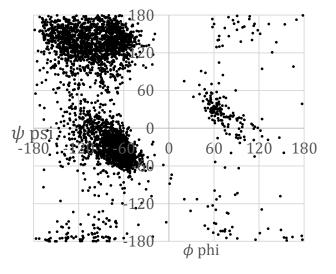
$C_{i,i+2}^{\alpha}$ distance / angle





- why is distance less clear?
- think of ramachandran plot





First simple model

n residues, n interaction sites i, i+1 restrained (C^{β} formulation) Overlap penalty / radii

- lys 4.3 Å, gly 2.0 Å, ... trp 5.0 Å
- $U(r_{ij}) = (\text{radius}_i + \text{radius}_j)^2 r_{ij}^2$

force hydrophilic residues to surface, for these residues

- $U^*(r_{ij}) = (100 d_i^2)$ where d_i is distance to centre, 100 is arbitrary
- disulfide bonds
- very strong residue specific interactions
- $U^{long}(r_{ij}) = c_{ij}(r_{ij}^2 R^2)$ where c_{ij} is residue specific
- R is 10 Å for attraction, 15 Å for repulsion

residue specific part of interaction

- c_{ij} table
- features
 - hydrophobic
 - + -
 - nothing much

	lys	glu	•••	gly	pro	val
lys	25	-10		0	0	10
glu	-10	25		0	0	10
•••						
gly	0	0		0	0	0
pro	0	0		0	0	0
val	10	10		0	0	-8

summary

- *i,i*+1 residue-residue
- overlap
- long range
- solvation

where is physics?

- solvation?
 - term pushes some residues away from centre
- electrostatics
- hydrophobic attraction
 - by pair specific c_{ii} terms

other properties

- smooth / continuous function
- derivative with respect to coordinates
 - (good for minimisation)

does it work? what can one do?

results from first model

- try to "optimise" protein structure
- for 50 residues, maybe about 5 Å rms
 - maybe not important

Model does...

- make a hydrophobic core
- put charged and polar residues at surface
- differentiate between possible and impossible structures

Model does not reproduce

- any geometry to Å accuracy
- details of secondary structure types (not intented)
- physical pathways
- subtleties of sequence features (simplicity of c_{ij} matrix)

Improvements to simple model

Aim

biggest improvement for least complication

Possibilities

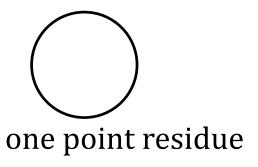
- more points per residue
- more complicated c_{ii} matrix... (more types of interactions)
- an example weakness

Important structural features of proteins

- all proteins have hydrogen bonds at backbone
- proteins differ in their sidechain interactions...

more complicated interactions

sidechain packing

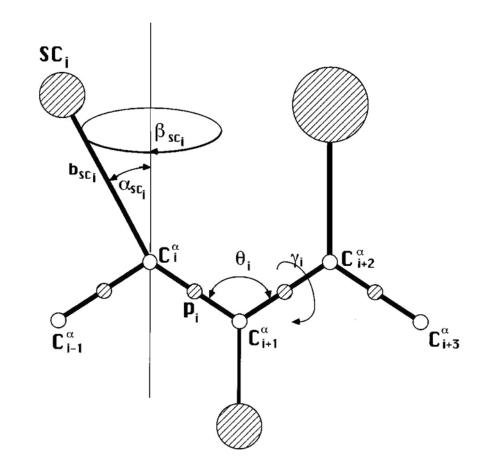


3 points per residue

Scheraga model

3 points per residue

- 2 for interactions
 - p_i is peptide bond centre
 - SC_i is sidechain
- 1 for geometry
 - Cα
- C^{α} C^{α} fixed at 3.8 Å

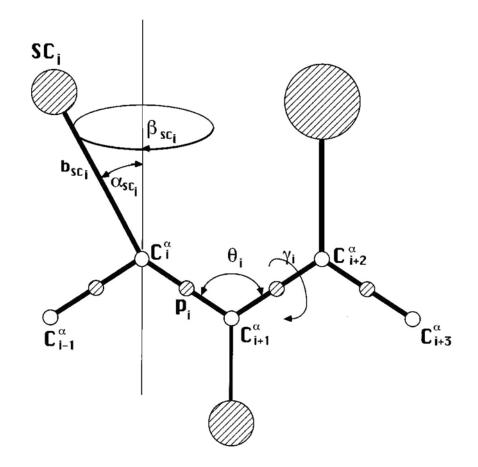


Do interaction sites correspond to atoms?

Terms in Scheraga model

Total quasi energy =

- side-chain to side-chain
- side-chain to peptide
- peptide to peptide
- torsion angle γ
- bending of θ
- ...
 - bending α_{sc}



angle between C^{α} sites

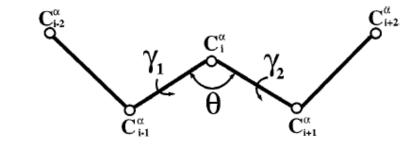
Cunning approach

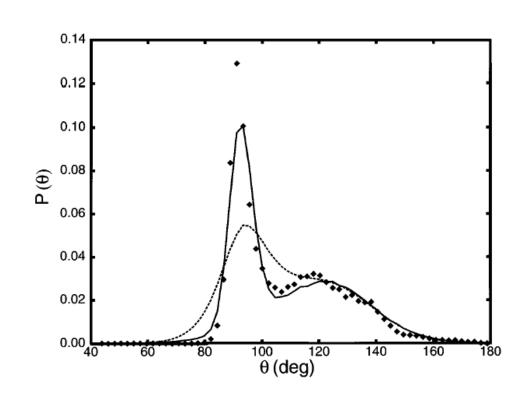
- look at θ distribution
- model with Gaussians

then say

$$U(\theta)^{bend} = -RT \ln P(\theta)$$

where P(x) is the probability of finding a certain x





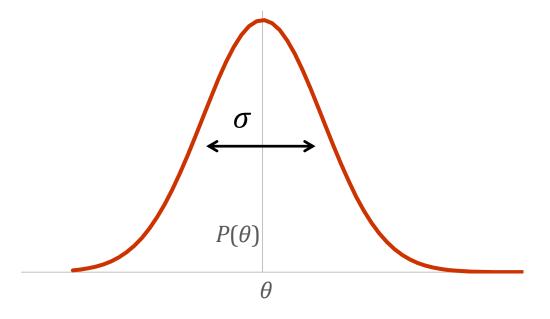
Gaussian reminder

- get μ and σ from fitting
- angle θ depends on fitting

$$P(\theta) = \frac{1}{\sigma\sqrt{2\pi}} \exp\left(\frac{-(\theta - \mu)^2}{2\sigma^2}\right)$$

How would forces work?

- express θ in terms of coordinates r
- say $U(\theta)^{bend} = -RT \ln P(\theta)$
- take $\frac{dU}{d\theta} \frac{\partial \theta}{\partial \vec{r}}$



pseudo torsion term

Like atomic torsion $U(\gamma_i) = a_i \cos n\gamma_i + 1 + b_i \sin n\gamma_i + 1$

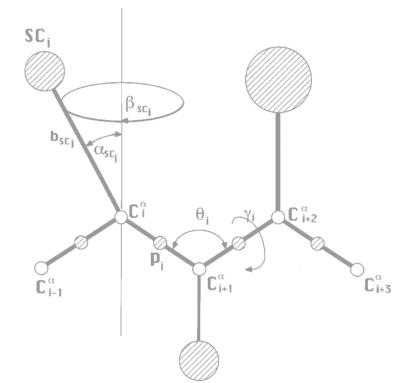
• *n* varies from 3 to 6 depending on types i + 1, i + 2 (numbering from picture)

Three kinds of pair

- gly
- pro
- others

Net result?

- residues will be positioned so as to populate correct parts of ramachandran plot
- this model will reproduce α -helix and β -sheets



side-chain peptide

Not so important

- mostly repulsive $U^{sc-p}(r_{sc-p}) = kr_{sc-p}^{-6}$
- *k* is positive, so energy goes up as particles approach

side chain interactions

Familiar
$$U(r_{ij}) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-6} \right)$$

but, consider all the σ and ε

Main result

- some side chains like each other (big ε)
- some pairs can be entirely repulsive (small ε big σ)
- some not important (small ε small σ)

more complications

Real work used

- different forms for long range interactions
- cross terms in pseudo angles

as
nicht für Klausul

What can one do?

Typical application

Background

- protein comparison lectures...
- different sequences have similar structure
 - can we test some structure for a sequence

Remember sequence + structure testing in modelling Übung?

- here
 - given some possible structures for a sequence
 - can be tested with this simple force field

What can we not do?

- physical simulations
 - think of energy barriers (not real)
 - time scale

summary of philosophy

- Is any model better than others?
- Each model represents something of interest
 - hydrophobic / hydrophilic separation
 - reasonably good quality structure with
 - real secondary structure
 - accurate geometry

Main aims

- pick the simplest model which reproduces quantity of interest
- Are there bad models?
- complicated, but not effective
- interaction sites at wrong places
 - not efficient
 - not effective

Parameterisation...

Problem example

- charge of an atom ?
 - can be guessed, measured? calculated from QM
- ε and σ in atomistic systems
 - can be taken from experiment (maybe)
 - adjust to reproduce something like density

What if a particle is a whole amino acid or sidechain?

- is there such a thing as
- charge?
- ε and σ ?

Approaches to parameterisation

General methods

- average over more detailed force field (brief)
- optimise / adjust for properties (brief)
- potentials of mean force / knowledge based (detailed)

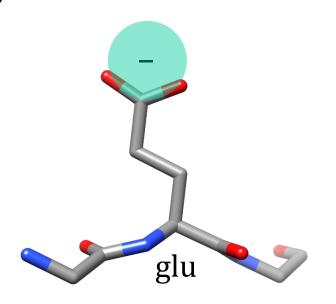
From detailed to coarse grain

Assume detailed model is best

- Can we derive coarse grain properties from detailed?
- Examples consider one or two sites per residue
- mass? easy add up the mass of atoms (also boring)

Charge? not easy

- size of charge obvious
- location ?
 - not easy
 - does this let us include polarity? No.
- is this the right way to think about it ?...



Averaging over details is not easy

General interaction between two residues

- will depend on orientation, distance, other neighbours
- not all orientations occur equally likely
- sensible averaging not obvious
- better approach ...

Parameterising by adjustment / optimisation

```
for (parameter = small; parameter < big; parameter++)
    measure happiness</pre>
```

Define happiness - what do you want?

- density at equilibrium
- free energy change of some process
- distance of average protein structure from X-ray

• ...

cost function

For your definition of happiness

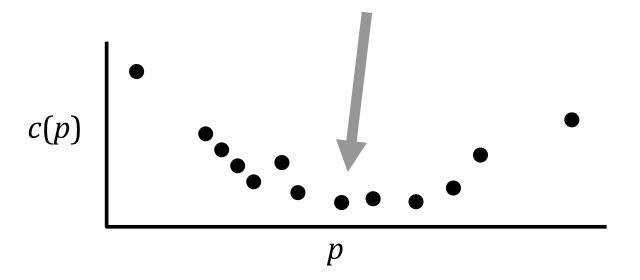
- some measured observable \mathcal{A}_{obs}
 - density, dielectric constant, diffusion constant, ...

From simulation with parameter *p*

- simulate and get A_p
- unhappiness (cost) is a function of p, so we have c(p) $c(p) = \left| \mathcal{A}_{obs} \mathcal{A}_{p} \right|$

or maybe
$$c(p) = (\mathcal{A}_{obs} - \mathcal{A}_p)^2$$

concrete example..



- each point is result from a simulation
- noise / inaccuracy, not symmetric / linear

Example: parameter
$$p$$
 is σ in $U(r_{ij}) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-6} \right)$ we would be adjusting the size of particles

parameters optimisation - boring? easy?

You would not choose *p* values randomly or by systematic search

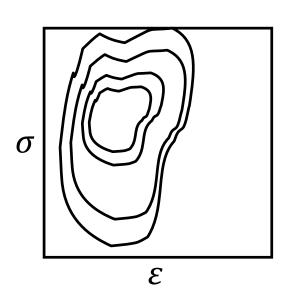
• (use a classic optimisation method)

Is this too easy and dull?

• what you probably have is several parameters $c(p_1, p_2)$

$$U(r_{ij}) = 4\varepsilon_{ij} \left(\left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-12} - \left(\frac{\sigma_{ij}}{r_{ij}} \right)^{-6} \right)$$

• measure the error/cost in 2D space



mapping parameter space

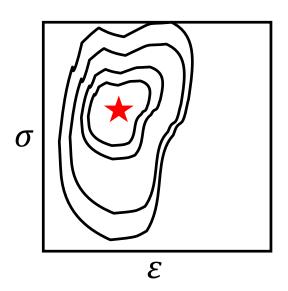
What does this tell us?

- find best ε and σ
- see that ε is critical, σ less so

Practical implementation

- systematic search? Inefficient
- automate the optimisation

Problems...



Problems with parameterisation

- scheme requires a believable measure of quality
- easy for two parameters
- possible for 3, 4 parameters
- very difficult for 100 parameters

Optimising for some properties

- you optimize for density
 - diffusion, free energy changes
 - all broken

Generalisation / recall

- you optimise based on 10 proteins
 - test of 11th bad results (too small training set)

Different kind of score function

Change of style...

- questions on coarse-graining?
- why is entropy an issue? (numbers of particles / states)
- from nice ideas to dumb empiricism

Potentials of mean force

Potential of mean force ... knowledge based score functions

- very general
- history from atomistic simulations

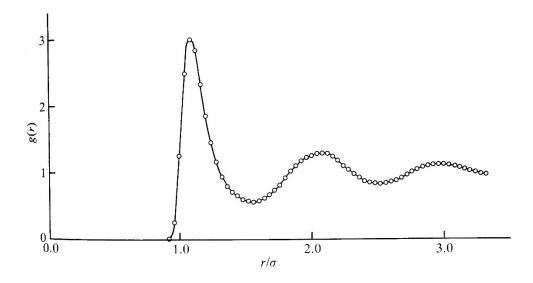
Basic idea .. easy

• from radial distribution function, to something like energy...

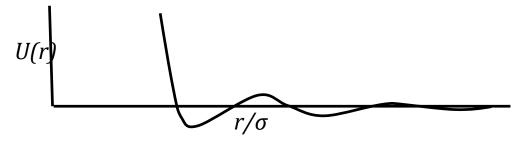
Intuitive version of potential of mean force

Radial distribution function g(r)

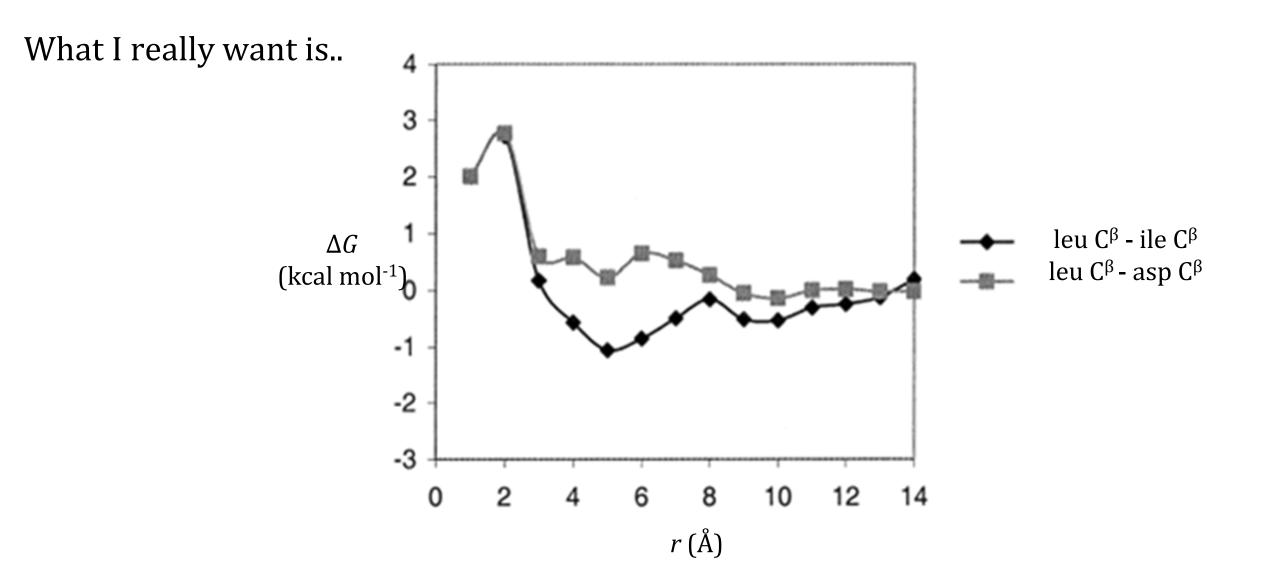
• probability of finding a neighbour at a certain distance



What does this suggest about energy?



Goal



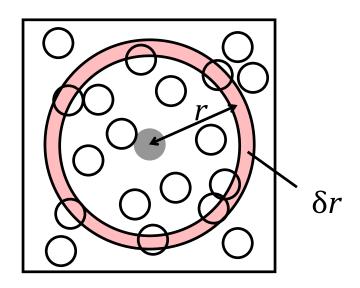
Radial distribution function

Formal idea
$$g(r) = \frac{N_{neighbours seen(r)}}{N_{neighbours expected(r)}}$$

$$N_{expected} = \frac{V_{shell}}{V} N$$

- *N* particles
- V volume
- Calculating it?
 - define a shell thickness (δr)
 - around each particle
 - at each distance, count neighbours within shell

$$g(r) = \frac{V}{NV_{shell}} N_{shell}(r)$$



Rationale for potentials of mean force

For state i compared to some reference x

$$\frac{p_i}{p_{\chi}} = \frac{e^{\frac{-E_i}{kT}}}{e^{\frac{-E_{\chi}}{kT}}} = e^{\frac{E_{\chi} - E_i}{kT}}$$

$$\ln \frac{p_i}{p_\chi} = \frac{E_\chi - E_i}{kT}$$

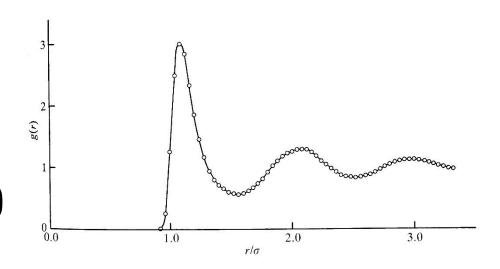
$$\Delta E = kT \ln \frac{p_i}{p_x}$$

Information in distribution function

Intuitive properties?

- how likely is it that atoms get near to each other ($< \sigma$)?
- what would a crystal look like? (very ordered)
- what if interactions are
 - very strong (compared to temperature)
 - very weak
- Seems to reflect
 - strength of interactions / order

Relate this back to energy



Energy from g(r)

From statistical mechanics
$$g(r) = e^{\frac{-\Delta G}{kT}}$$

- not quite textbook formulation normally describe in terms of work
- what is the Δ in ΔG ?
 - the free energy change going from infinite separation to some distance r

How would we get g(r)?

- experiment? sometimes
- simulation easy simulate at high resolution
- soon protein data bank

Assumptions

our system is at equilibrium

Generalising ideas of potential of mean force

What else can we do?

• think of more interesting system (H₂0)

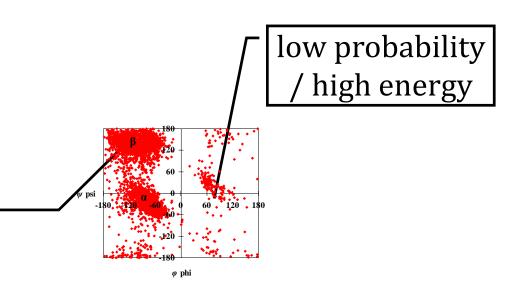
Would we express our function in terms of O? H?

- both valid
- could consider work done bringing an O to O, O to H, H to H
 - for fun on next page

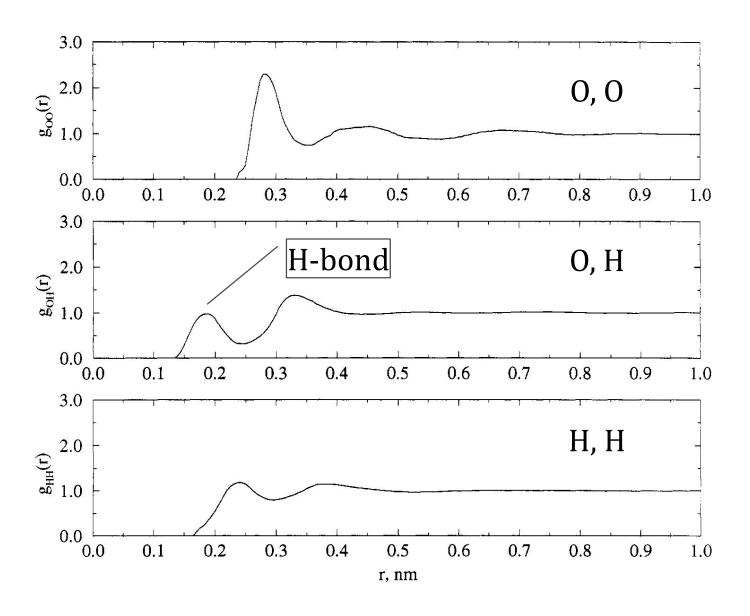
More general..

- are we limited to distances? No
- example ramachandran plot
- other atoms? ...

high probability / low energy



radial distribution function (water)



Reformulating for our purposes

Can one use these ideas for proteins?
Our goal?

- a force field / score function for deciding if a protein is happy
- work with particles / interaction sites
- slightly different formulation
 - if I see a pair of particles close to each other,
 - is this more or less likely than random chance?
 - treat pieces of protein like a gas
 - care about types of particles (unlike simple liquid)

Let us define...

Score energy formulation

$$W_{AB}(r) = -RT \ln \left(\frac{N_{AB}^{obs}(r \pm \delta r)}{N_{AB}^{exp}(r \pm \delta r)} \right)$$

 N_{AB}^{obs} how many times do we see

- particles of types A and B
- distance r given some range δr

 N_{AB}^{exp} how often would you expect to see AB pair at r?

remember Boltzmann statistics

This is not yet an energy / score function!

• it is how to build one

Intuitive version

- Cl⁻ and Na⁺ in water like to interact (distance r^0)
- N_{AB}^{obs} is higher than random particles
- $W_{\text{CINa}}(r)$ is more negative at r^0

Details of formulation

$$W_{AB}(r) = -RT \ln \left(\frac{N_{AB}^{obs}(r \pm \delta r)}{N_{AB}^{exp}(r \pm \delta r)} \right)$$

• looks easy, but what is N^{exp} ?

Maybe fraction of particles is a good approximation

$$N_{AB}^{exp} = N_{all}X_{Na}X_{Cl}$$
 (use mole fractions)

• use this idea to build a protein force field / score function

Protein score function

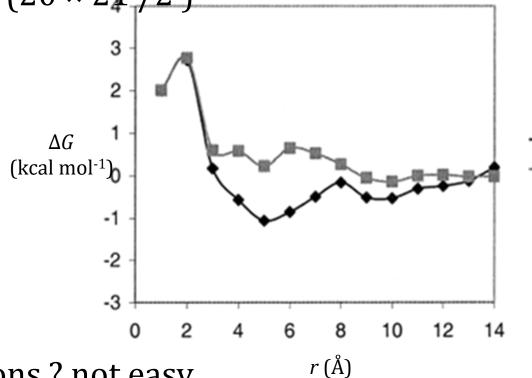
Arbitrarily

- define interaction sites as one per residue
 - maybe at C^{α} or C^{β}
- collect set of structures from protein data bank
- define a distance (4 Å) and range (± 0.5 Å)
- count how often do I see
 - gly-gly at this range, gly-ala, gly-X, X-Y ...
 - gives me Nobs
 - how many pairs of type gly-gly, gly-ala, gly-X, X-Y... are there?
 - gives me *N*^{exp}
 - repeat for 5 Å, 6 Å, ...
- resulting score function...

final score function

For every type of interaction AB $(20 \times 21/2)$

• set of $W_{AB}(r)$



All ingredients in place

- can we use this for simulations? not easy
- can we use to score a protein? yes

Names

Boltzmann-based, knowledge based

leu C^{β} - ile C^{β} leu C^{β} - asp C^{β}

Applying knowledge-based score function

Take your protein

- for every pair of residues
 - calculate C^{β} C^{β} distance (for example)
 - look up type of residues (ala-ala, trp-ala, ...)
 - look up distance range
 - add in value from table

What is intuitive result from a

a sensible protein / a misfolded protein ?

Is this a real force field? yes

Is this like the atomistic ones? no

- there are no derivatives $\left(\frac{dU}{dr}\right)$
- it is not necessarily defined for all coordinates

Practical Problems Boltzmann score functions

Do we have enough data?

how common are Asp-Asp pairs at short distance?

How should we pick distance ranges? How far should we look? (r_{AB}) ?

What are my interaction sites?

• C^{α} ? C^{β} ? both?

Data bias

- Can I ever find a representative set of proteins?
 - PDB is a set of proteins which have been crystallised

Reminder

- we want low-resolution score functions
- if we work in a Boltzmann framework, we work with real energies
- everything ends up as $\frac{p_i}{p_j} = e^{-\frac{\Delta E}{RT}}$ or here $\Delta E = -RT \ln \frac{p_i}{p_j}$ or $\Delta E = -RT \ln \frac{N_{obs}}{N_{exp}}$
- we are comparing against what you expect from random events without interactions \boldsymbol{p}_i
- work with kJ mol⁻¹, we can
 - make real energetic predictions (kinetics, equilibria)
 - combine with other energy terms

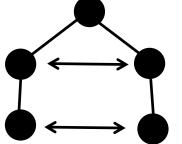
Problems of Principle

Boltzmann statistics

- is the protein data bank a set of structures at equilibrium? Is this a potential of mean force? Think of Na, Cl example
- that is a valid PMF since we can average over the system
 Energy / Free energy
- how real?

Nexp ? how should it be calculated ?

- is the fraction of amino acid a good estimate? No.
- there are well known effects.. Examples



$$i,i+2$$

i,i+4 very different statistics

Boltzmann based scores: improvements / applications

- collect data separately for (i, i+2), (i, i+3), ...
 - problems with sparse (missing) data
- collect data on angles
- collect data from different atoms
- collect protein small molecule data

Are these functions useful?

- not perfect, not much good for simulation
- we can take any coordinates and calculate a score
 - directly reflects how likely the coordinates are
- threading / fold recognition / model quality

Parameterising summary

- Inventing a score function / force field needs parameters
- totally invented (Crippen, Kuntz, ...)
- optimisation / systematic search
- statistics + Boltzmann distribution

Summary of low-resolution force fields

Properties

- do we always need a physical basis?
- do we need physical score (energy)?

Questions

- pick interaction sites
- pick interaction functions / tables

What is your application?

- simulation
 - reproducing a physical phenomenon (folding, binding)
- scoring coordinates

Parameterisation

Averaging, optimisation, potentials of mean force

Next – less physical