No Atoms

So far
• atoms → coarse grained → lattices

Today – the holistic lecture
• from reaction kinetics to substitution matrices

What if we forget atoms and residues?
• Kinetics / dynamic systems
 • A → B breakdown of A, \(\frac{d[A]}{dt} = k[A] \)
 • foxes and hares \(\frac{dn_h}{dt} = \alpha n_h - \beta n_h n_f \) and \(\frac{dn_f}{dt} = \gamma n_h n_f - \delta n_f \)
 \(n_h, n_f \) number of hares and foxes
 • complicated kinetics – bacterium eats 10 different nutrients, makes 10 waste products, interconversion of nutrients
Plan

- simplest systems
 - one or two reactants
- treatment of more complicated systems
- transition matrices in sequences

- different approach
- handling very low probabilities
Simplest systems

- one species breakdown / radioactive decay
- $A \rightarrow B$ or A disappears
- philosophy
- we know the average disappearance of A
- Each molecule has an equal chance of breaking down

$$\frac{dA}{dt} = -kA$$

$$\frac{dt}{dA} = -\frac{1}{kA}$$

$$t = -\frac{1}{k} \ln A - \frac{1}{k} \ln c$$

$$\ln A - \ln c = -kt = \ln \left(\frac{A}{c} \right)$$

$$\frac{A}{c} = e^{-kt} \quad \text{so } A = ce^{-kt} \quad \text{or } A = A_0 e^{-kt} \quad \text{not unexpected}$$
forward and backward reactions

\[k_1 \]

\[2A \rightleftharpoons B \] so \[2A \rightarrow B \] and rate of disappearance is \(k_1 A^2 \), rate of appearance is \(k_2 B \)

\[k_2 \]

\[
\frac{dA}{dt} = -2k_1A^2 + 2k_2B \quad \text{and} \quad \frac{dB}{dt} = k_1A^2 - k_2B
\]

Theme

lots of processes are easiest to describe in differential form (rate of change)
These are easy enough to do by hand
Make it more complicated
An enzymatic reaction

\[E + S \overset{k_1}{\underset{k_2}{\rightleftharpoons}} ES \rightarrow E + P \]

\[
\frac{dE}{dt} = -k_1 E \cdot S + k_2 ES + k_3 ES
\]

\[
\frac{dS}{dt} = -k_1 E \cdot S + k_2 ES
\]

\[
\frac{dES}{dt} = k_1 E \cdot S + k_2 ES - k_3 ES
\]

\[
\frac{dP}{dt} = k_3 ES
\]

let us rewrite..
\[
\begin{align*}
\frac{dE}{dt} &= -k_1 E \cdot S + k_2 ES + k_3 ES \\
\frac{dS}{dt} &= -k_1 E \cdot S + k_2 ES \\
\frac{dES}{dt} &= k_1 E \cdot S + k_2 ES - k_3 ES \\
\frac{dP}{dt} &= k_3 ES
\end{align*}
\]

- We have a matrix form
- What is \(k_1 E \cdot S \)? (and next terms)
- you would usually say velocity vector \(\mathbf{v} \)
- we can describe everything as \(\mathbf{s} = \mathbf{Nv} \)
General approach to kinetics

• "differential form" of kinetics
• applicable to most reactions

How is it helpful?

• \(\frac{dA}{dt} \) is a velocity in one dimension
• velocity of A depends on where A is, B is, ...
• how to predict behaviour of system?

• For some initial \(A_t \) say \(A_{t+\Delta t} = A_t + v\Delta t = A_t + \frac{dA}{dt}\Delta t \)
 • numerical integration exactly as in Newtonian dynamics
 • do the same for \(A, B, C \) ...
• Not just in this lecture – maple, matlab, deSolve in R, ..
Even more general

- We have a number of states i, j, \ldots starting materials, products, intermediates
- we have a finite amount of material
 - use the term probability p_i for convenience and consistency
- $p_i(t + \delta t)$ depends on initial value, flux in and flux out

\[
p_i(t + \delta t) = p_i(t) + \delta t \sum_{i \neq j} k_{ji} p_j(t) - \delta t \sum_{i \neq j} k_{ij} p_i(t)
\]

k_{ab} is rate constant for $a \rightarrow b$

- or given a set of reactants and a matrix of k's (rate matrix)
 - we can model the system
- if we say $v_{ij} = p_i k_{ij}$ what is the meaning of equilibrium? Every $v_{ij} = v_{ji}$
 - for an arbitrarily complicated system
 - I can find the set of $p \ldots$ equilibrium concentrations
the master equation

- in chemical modelling, physical processes, work with master equation

- modelling in engineering
 - put all components and possible routes into numerical bucket
 - find steps which are bottle-necks
 - effect of alternative pathways, think of multitude of protein folding pathways

Last property
- the state at $t + \delta t$ depends on state at t and rate constants
- no dependence on previous states = Markov process

- what is the connection to sequences and mutations?
Markov processes and mutations

- First – more general idea of transition matrices / Markov Chains
- My system is described by a vector of probabilities – think amino acids at a site

\[
p = \begin{bmatrix}
p_A \\
p_G \\
p_C \\
\vdots
\end{bmatrix}
\]

for ala, gly, cys, ...

- \(p_{AB} \) probability of a transition AB but we have lots of them
A Markov transition matrix

\[
\begin{bmatrix}
D & E & \ldots & W \\
D & p_{DD} & p_{DE} & \ldots & p_{DW} \\
E & p_{ED} & p_{EE} & \ldots & p_{EW} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
W & p_{WD} & p_{WE} & \ldots & p_{WW}
\end{bmatrix}
\]

Only valid for short times
- D→E OK
- D→S→T→A→D→E something different

In Markov / probability framework rows sum to 1
Applying a matrix

• imagine three kinds of amino acid, $P = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$

• population $E, D, W = 0.4, 0.4, 0.2$

• at time $t + \delta t$

\[
\begin{bmatrix}
0.7 & 0.2 & 0.1 \\
0.3 & 0.6 & 0.1 \\
0.1 & 0.1 & 0.8
\end{bmatrix}
\begin{bmatrix}
0.4 \\
0.4 \\
0.2
\end{bmatrix}
= \begin{bmatrix}
0.7 \cdot 0.4 + 0.2 \cdot 0.4 + 0.1 \cdot 0.2 \\
0.3 \cdot 0.4 + 0.6 \cdot 0.4 + 0.1 \cdot 0.2 \\
0.1 \cdot 0.4 + 0.1 \cdot 0.4 + 0.8 \cdot 0.2
\end{bmatrix}
\]

• gives us the new state of the system

• is this a substitution matrix?
comparison with a substitution matrix

blosum62:

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-2	-1	1	0	-3	-2	0	
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
N	-2	0	6	-1	3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	-1	-3	-3	-1	0	-1	-4	-3	-3
C	0	-3	-3	-3	9	-3	-4	-3	-3	-1	-1	-3	-1	-2	-3	-1	-1	-2	-2	-1
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-2	-3	-2	0	-2	-2	-3	-3	0	
H	-2	0	1	-1	-3	0	0	-2	0	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2	
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-2	-1	1	5	-2	-2	0	
W	-3	-3	-4	-4	-2	-2	-3	-2	-2	-3	-2	-3	-1	1	4	-3	-2	-2	1	1
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4

Andrew Torda

24/10/2018 [13]
where do blosum and PAM come from?

- take related sequences – no alignment errors
- count mutations (transitions) for each AB pair
- correct for the amount of A, B (p_A, p_B, \ldots)

<table>
<thead>
<tr>
<th>Sequence 1</th>
<th>Sequence 2</th>
<th>Sequence 3</th>
<th>Sequence 4</th>
<th>Sequence 5</th>
<th>Sequence 6</th>
</tr>
</thead>
<tbody>
<tr>
<td>WWYIR CASILRKIYIYGPV GVSRLRTAYGGRK</td>
<td>NRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFWYR CASILHLYIRSPA GVGSITKIYGGRK</td>
<td>RNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYYVR AAAVARHIYLRKTV GVGRRLKVHGSTK</td>
<td>NRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYFIR AASICRHLYIRSPA GIGSFEKIYGGRR</td>
<td>RRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYYYR AASIARKIYLRQGI GVGGFQKIYGGQR</td>
<td>RNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WFWYR AASVARHIYMKQV GVKLKNLYGGAK</td>
<td>SRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYFIR AASVARHIYMKQV GVKLKNLYGGAK</td>
<td>SRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYYYR TASIARRLYVRSPG GDALRLVYYGSK</td>
<td>RBG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYYYV TASIARRLYIRSPG GVGRRLVYGGNK</td>
<td>RRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYYYR TASIARRLYIRSPT GVGSMTKIYGGRR</td>
<td>RNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYYYR AASTARHLYLRGGA GVGSMTXIYGGQR</td>
<td>RNG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WYYYR AAALLRKYIOGFV GVNLRTHYGGK</td>
<td>DRG</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
transition matrix versus blosum (PAM, JTT, Gonnet, ..)

• philosophically related – not the same

• a substitution matrix is a log-odds creation - $\log \frac{n_{AB}^{obs}}{n_{AB}^{exp}}$
 • scaling does not matter

• a transition matrix is based on formal probabilities
 • if we have a composition vector \mathbf{v} elements sum to 1
 • after multiplication, still sum to 1

• similarities ...

• application to longer times
longer times

- transition matrix tells me about some change Δt
 - $p_{t+\delta t} = Pp_t$ for composition vector p and matrix P
 - then at next time
 - $p_{t+2\delta t} = Pp_{t+\delta t}$ or $PPPp_{t+\delta t}$

- to go to longer times, repeatedly multiply the matrix
- what happens? diagonal elements represent conservation (p_{AA})
 - probability mass moves away from diagonal

- basis of PAM 100, PAM 200 ... substitution matrices

- when doing alignments, one should use the correct substitution matrix
infinite time

- I have a system described by probability of states p
- I repeatedly multiply by a realistic $P \ldots P^\infty p$

- does my distribution disappear? become flat?

- with infinite time everything becomes equally likely

- realistic? No
 - alignments become less reliable with evolutionary time
Summary so far

- chemical kinetics, mutation trajectories, fox + hare populations
 - examples of dynamic systems – very similar methods to treat them
 - allows one to treat complicated kinetics
 - usually simulated by numerical integration
- systems biology problems? the same?
 - sometimes yes – sometimes neglect conservation of mass and formal treatment

- a Markov process state at $t + \delta t$ depends on state t
 - do not talk about second order or n^{th} order processes

- everything so far depends on bulk properties
 - what happens if you only have a few molecules? small numbers? Last lecture