Systems with low numbers and noise

- Usually we work with average properties
- averages require large numbers
- when are they definitely wrong?

- I would say there is $\frac{1}{6}$ chance of going backwards (away from equilibrium)
- Stock market
- yesterday trade at $\in 10$
- buy offer at € 9, sell at € 11
- widow decides to sell husbands shares at \in 9
- report of 10% share price drop
- you are asked to judge the significance
 - simulate how often it happens by chance
- Queuing simulations
- shops, transport

more low copy dynamic systems

Lotka-Volterra

- foxes and hares $\frac{dn_h}{dt} = \alpha n_h \beta n_h n_f$ and $\frac{dn_f}{dt} = \gamma n_h n_f \delta n_f$ n_h, n_f number of hares and foxes
- but what if fox/hare meetings are not so common ?

Dilute chemistry ? exotic

- lac repressor < 40 copies per cell well studied, classic DNA regulator
- what are chances of a protein repressor drifting through a cell and finding exactly the right piece of DNA ?

Epidemiology

• states – healthy, sick, immune

Simulating rare events

Two aspects

- when do events occur ?
- what to do ?

Frequencies of rare events

Event are not correlated

- this particle is independent of that one
- calls into help line are independent
- flood in this time not correlated with some other time Average μ is known – number of events in a time period in time *t*
- average number of calls in day, Geiger counter counts / s, ..
- later use rate λ so in time $t, \mu = \lambda t$
- average time between events ? $\tau = \lambda^{-1}$

(check dimensions here)

Two names will keep coming up

- poisson distribution think of μ
- exponential distribution think of τ

Poisson

Used for next step

What is the probability of *n* events in time *t* ?

 $P(x = n) = e^{-\mu} \frac{\mu^n}{n!}$ $\mu = 2 \quad \text{but probability of seeing}$ $2 \text{ events is only} \approx \frac{1}{4}$

how to derive ? Do derivation of binomial and take limit

time between events

We have $P(x = n) = e^{-\mu} \frac{\mu^n}{n!} = e^{-\lambda t} \frac{\mu^n}{n!}$

- something does not happen for τ , then happens
- zero events over some $t ? P(x = 0) = e^{-\lambda t} \frac{\mu^0}{0!} = e^{-\lambda t}$

- This means the first event happened at τ and $\tau > t$ so
- $P(\tau > t) = P(x = 0) = e^{-\lambda t}$ but then probability of an event is
- $P(\tau \le t) = 1 P(x = 0) = 1 e^{-\lambda t}$
- Cumulative probability over all τ is $1 e^{-\lambda t}$
- instantaneous probability for some *t* will be the derivative

time between events

- Cumulative probability over all τ is $1 e^{-\lambda t}$
- instantaneous probability for some *t* will be the derivative

$$\frac{d}{dt}P(T \le t) = \frac{d}{dt}1 - e^{-\lambda t} = \lambda e^{-\lambda t}$$

• distribution of gaps between events τ is $\lambda e^{-\lambda t}$ or exponential distribution

Formally, τ is a random variable drawn from $f(\tau, t) = \lambda e^{-\lambda t}$

• back to simulation question

simulating with rare events

- λ 10 events a second or 20 calls an hour
- define our time step as τ
 because τ is the time between events
- simulate

while $(t < t_{max})$ pick τ from $P(\tau = t) = \lambda e^{-\lambda t}$ $t := t + \tau$ do something

• bit more complicated

more than one event type

 $\begin{array}{ccc} k_1 & k_3 \\ E+S \rightleftharpoons ES \rightarrow E+P \\ k_2 \end{array}$

- three reactions each is a poisson process
- total poisson process
 - I have A's and B's happening independently
 - I see μ_A events and μ_B events
 - total μ_0 is just $\mu_A + \mu_B$ so I can just add up λ 's
- $P(x = n) = e^{-\mu} \frac{\mu^n}{n!}$ μ is the average number of times something happens
- add up the rates, say $\lambda_0 = \sum_{i=1}^{N_{rates}} \lambda_i$
- $P(x = n) = e^{\lambda_0 t} \frac{\mu^n}{n!}$ or maybe you prefer $P(x = n) = e^{-\mu_0} \frac{\mu^n}{n!}$
- we can draw timestep from this distribution, but what happens there ?

$$\mu_0 = \lambda_0 t$$
 total events per time

• simulate

while $(t < t_{max})$ pick Δt from $P(\tau = t) = \lambda_0 e^{-\lambda_0 t}$ $t := t + \tau$ pick a reaction

choosing a reaction

 N_{λ} rates each λ_i (three in previous example)

• probability of reaction *i*

$$p_i = \frac{\lambda_i}{\sum_j^{N_\lambda} \lambda_j}$$

implementation to choose which reaction happens

• make a table of
$$q_i = \sum_{j=1}^{i} p_j$$

r = rand (0..1)
for (i = 0; i < n; i++) {
 if $r < q_i$ { return i}}
 $p_i \qquad q_i$
0.2 0.2
0.3 0.5
0.5 1.0

The Gillespie algorithm

- $\mu_0 = \lambda_0 t$ total events per time
- calculate rate λ_0
- simulate
- while $(t < t_{max})$ pick τ from $P(\tau = t) = \lambda_0 e^{-\lambda_0 t}$ $t := t + \tau$ pick a reaction from regine on p

pick a reaction from recipe on previous slide update rates (λ 's) since quantities have changed

What did Mr Gillespie find ?

1977 computer graphics..

Gillespie, D.T. J. Phys. Chem. 81, 2340-2361 (1977)

Why do Gillespie simulations?

You already know average behaviour from classic kinetics

• You can predict $[Y]_t$ but it is an average

Run simulation 1000 times

- gives you $[Y]_t \pm \sigma_Y$
- can predict fluctuation around equilibrium values

Back to cell with one DNA + 40 copies of repressor

- from some estimates of kinetics, can predict
 - average occupancy
 - lifetime of bound state
 - fraction of time DNA site is occupied, confidence intervals

Extensions / Applications of Gillespie method

Fuchsen + blue hares and red hares

- move randomly, meet randomly fox + hare \rightarrow fox
 - widely used in eco-system modelling

Spatial diffusion problem in cells

- for a particle in box_1 , $box_1 \xrightarrow{k} box_2$
 - diffusive simulations + chemistry states are mixture of chemistry and location

Finance

• buyers and sellers do not often meet – not the Börse

Alternative philosophy

• Follow a trajectory in some field

A particle moves is hit by other particles

- you do not want to model the particles explicitly
- a chemical trajectory with side reactions

Adding noise to systems

Examples here

- Gaussian (normal) noise
 - mean $\mu = 0$
 - call my noise W(t) means $\mu = 0$ and variance $(\sigma^2) = t$
 - not obvious Brownian processes you move randomly

Want to build noise into normal simulations

• Normally (Newtonian dynamics, chemical kinetics) – simple integrator $\frac{dx}{dt} = f(x)$ where f comes from a force or chemistry rate of change and we have just said $x_{n+1} = x_n + \Delta t f(x)$

use W(x) – Wiener process

 $x_{n+1} = x_n + \Delta t f(x)$ can also write

 $x_{n+1} = x_n + dx$

if I have a random process W $x_{n+1} = x_n + dW$

- Meaning of *dW* ?
- W(t) is the fluctuation over t random variable from Gaussian (0,t)
- dW also a random variable $\sqrt{\Delta t}$ · gaussian(0, t) more concisely $\sqrt{t}N(0, t)$ usually use N() to represent Gaussian random number

integrate over random variable

$$\frac{dx}{dt} = f(x) \qquad \text{so } dx = f(x(t))dt$$
$$x = \int f(x(t))dt$$

for random variable dx = dW

$$x = \int dW \qquad \text{define} \qquad X(T) = \int_0^T x(t) dW(t) \qquad \text{make it discrete}$$
$$\lim_{\Delta t \to 0} \sum_{j=0}^{N_{step}} x(j\Delta t) \cdot (W((j+1)\Delta t) - W(j\Delta t)) = \sum_{j=0}^{N_{step}} x(j\Delta t) \left(\sqrt{\Delta t}N(0,1)\right)$$

- so a recipe for the diffusive / Brownian motion
- more interesting to combine it

combining classic with noisy methods

A variable *X* feels a deterministic force f(X) and random g(X)dX(t) = f(X(t))dt + g(X(t))dW(t)

$$X(t) = X_0 + \int_0^t f(X(x)) ds + \int_0^t g(X(s)) dW(s)$$

- think of a protein *in vacuo* with Newtonian dynamics from *f*(*X*) and random effects of solvent from *g*(*X*)
- connect back to last week and this week chemistry

stochastic chemistry – not Gillespie

- $A + B \xrightarrow{k} C$
- dA = -kAB dt dB = -kAB dt dC = kAB dt
- then add noise

 $dA = -kAB dt + \kappa A dW_1(t) dB = -kAB dt + \kappa B dW_2(t) \text{ and}$ $dC = kAB dt + \kappa C dW_3(t)$

• simulating ? easy $A_{i+1} = A_i - kA_iB_i\Delta t + \kappa A_0 \sqrt{\Delta t} N(0,1)$ and similar for *B* and *C*

Schwartz, R, "Biological modelling and simulation, MIT Press, Massachussets (2008)

24/10/2018 [23]

Who uses this ?

- Chemistry reactions with random side reactions
- epidemiology
- ecosystems
- finance first google hit with maple .. finance [wienerprocess]

Ende Des Semesters

Last week

- simulations and processes using just a transition matrix
- from chemistry to mutations (also works for epidemiology, finance)
 Gillespie
- very rigorous
- rather slow
- Stochastic differential methods
- general noise
- Brownian dynamics, markets, epidemiology, chemical kinetics
- requires a model for noise occasionally rigorous