
Examples Programming in R

From C programming to R style

Goal

• two football teams with different averages

• how often does the better team win ?

• poisson processes

Andrew Torda 12/07/2018 [1]

Ingredients / Plan

Some ingredients / the plan

• poisson processes / exponential distribution / time between events

• how to code it

• naïve – time-based simulation

• changing distributions

• C programmer version

• using R features

Andrew Torda 12/07/2018 [2]

Taylor expansion of 𝐥𝐧 𝒙

Will need (soon)

lim
𝑛→∞

1 +
𝑇

𝑁

𝑁

First I want to know about ln 𝑥 + 1

Remember Taylor expansion for some 𝑎

𝑓 𝑥 = 𝑓 𝑎 + 𝑓′ 𝑎 𝑥 − 𝑎 +
𝑓′′ 𝑎

2!
𝑥 − 𝑎 2 +

𝑓′′′ 𝑎

3!
𝑥 − 𝑎 3 +⋯

for logarithms

ln 𝑥 = ln 𝑎 +
𝑥 − 𝑎

𝑎
−

𝑥 − 𝑎 2

2𝑎2
+

𝑥 − 𝑎 3

3𝑎3
+⋯

why ? do not forget
𝑑

𝑑𝑥
ln 𝑥 =

1

𝑥

Andrew Torda 12/07/2018 [3]

from previous slide

ln 𝑥 = ln 𝑎 +
𝑥−𝑎

𝑎
−

𝑥−𝑎 2

2𝑎2
+

𝑥−𝑎 3

3𝑎3
+⋯

so

ln 𝑥 + 1 = ln 𝑎 +
𝑥 + 1 − 𝑎

𝑎
−

𝑥 + 1 − 𝑎 2

2𝑎2
+

𝑥 + 1 − 𝑎 3

3𝑎2
−⋯

let me set 𝑎 = 1

ln 𝑥 + 1 = ln 1 + 𝑥 −
𝑥2

2
+
𝑥3

3
−⋯ = 0 + 𝑥 −

𝑥2

2
+
𝑥3

3
−⋯

what happens as 𝑥 → 0 ?
lim
𝑥→0

ln(𝑥 + 1) = 𝑥

will need this later

Andrew Torda 12/07/2018 [4]

Uniformly distributed events

Decay of a particle / chemistry

• A → B + C long term average is clear 𝐴 𝑡 = 𝐴0𝑒
−𝜆𝑡

• intuitive

• in some time Δ𝑇 I can talk about the probability of a breakdown

• if the decay rate 𝜆 is high, the probability is higher

• say time between breakdown is 𝜏 = 𝜆−1

• we rarely look at individual molecules (Δ𝑇 ≫ 𝜏)

• when do we see individual events ?

• football game (and Geiger counters, ion channels)

Andrew Torda 12/07/2018 [5]

Non-Uniformly distributed events

• Football – long term average is clear (1300 goals in 1000 games)

• short term ? very uncertain – no goals, 5 goals are possible

• order of magnitude..

• 𝜏 =
𝑇

𝑁
=

90

2
= 45 min (for about two goals scored)

• other systems in biology / chemistry ?

• ion channels in nerves open / close spontaneously (rare, but easy to measure)

• few copies of DNA repressor per cell

• DNA + protein → (DNA-protein) rare event – hard to see

• classical chemical kinetics is not helpful

Andrew Torda 12/07/2018 [6]

Distribution for these events

• Start from average over long 𝑇

• divide into 𝑁 × Δ𝑇

• get limit as 𝑁 → ∞ and Δ𝑇 → 0

my nomenclature

• rate 𝜆 = Τ1 𝜏 the average time between goals / channel opening / ..

• what is the average number of goals in Δ𝑇 ? 𝑃 Δ𝑇 = 𝜆Δ𝑇

• and probability of no goal in some Δ𝑇 is P0 Δ𝑇 = (1 − 𝜆Δ𝑇)

Andrew Torda 12/07/2018 [7]

longer time with many 𝚫𝐓

𝑃0 𝑇 ≈ 1 − 𝜆Δ𝑇 𝑁 or 1 −
𝜆𝑇

𝑁

𝑁

Result from earlier …lim
𝑥→0

ln 1 + 𝑥 = 𝑥

𝑃0 𝑇 ≈ 1 −
𝜆𝑇

𝑁

𝑁

= lim
𝑁→∞

1 −
𝜆𝑇

𝑁

𝑁

= exp log lim
𝑁→∞

1 −
𝜆𝑇

𝑁

𝑁

= exp 𝑁 log lim
𝑁→∞

1 −
𝜆𝑇

𝑁

= exp 𝑁
−𝜆𝑇

𝑁

= 𝑒−𝜆𝑇
Andrew Torda 12/07/2018 [8]

The exponential distribution

• probability for no goal 𝑃0 𝑇 = 𝑒−𝜆𝑇

• check intuition

• what I want is the probability of 1 goal, 2 goals, … within time 𝑡

𝐼1𝑑𝑡 = probability of no goal in 𝑡 × probability of goal in 𝑑𝑡

𝐼1𝑑𝑡 = 𝑃0 𝑡 𝜆 𝑑𝑡 = 𝜆𝑒−𝜆𝑇𝑑𝑡

𝐼1 = 𝜆𝑒−𝜆𝑇 exponential distribution
Andrew Torda 12/07/2018 [9]

𝑑𝑡

no goal

One possibility – use exponential distribution

• naïve inefficient simulation

we have rates 𝜆1 and 𝜆2 , work out total 𝜆0 = 𝜆1 +𝜆2
set up counters 𝑛1 and 𝑛2
set up 𝑡𝑚𝑝1 and 𝑡𝑚𝑝2
while (𝑡 < 𝑇_𝑔𝑎𝑚𝑒) {

𝑛1 += 𝑡𝑚𝑝1; 𝑛2 += 𝑡𝑚𝑝2;

𝑡𝑚𝑝1 = 𝑡𝑚𝑝2 = 0

Δ𝑡 = 𝑟𝑎𝑛𝑑𝑜𝑚_𝑓𝑟𝑜𝑚_𝑒𝑥𝑝𝑜𝑛𝑒𝑛𝑡𝑖𝑎𝑙(𝜆0)

decide who gets goal (random based on
𝜆1

𝜆1+𝜆2
)

increment 𝑡𝑚𝑝1 or 𝑡𝑚𝑝2

• we can be much more efficient

Andrew Torda 12/07/2018 [10]

90 min

2 goals

expected number of goals in 𝒕

• start with binomial distribution

• probability of success in one try is 𝑝

• I have 𝑛 tries

• what is the probability of seeing 𝑘 successes

𝑃 𝑘 𝑛, 𝑝) =
𝑛

𝑘
𝑝𝑘 1 − 𝑝 𝑛−𝑘

• you remember 𝑛
𝑘

=
𝑛!

𝑘! 𝑛−𝑘 !

• When do you see this ?

Probability of seeing 𝑘 = 5 heads from 𝑛 = 10 coin tosses with 𝑝 = Τ1 2

Andrew Torda 12/07/2018 [11]

• rate per unit time game 𝜆

• some rules

• events (goals) are independent

• events are rare – probability of one in short time 𝑡 is 𝜆𝑡

• you never see two events in a very short time

• take unit time and divide by 𝑛 (trials)

• probability in one of 𝑛 units is 𝑝 = Τ𝜆 𝑛

• we are interesting in case of very small 𝑝 in any one 𝛿𝑡

Andrew Torda 12/07/2018 [12]

original name binomial 𝑃 𝑘 𝑛, 𝑝) =
𝑛!

𝑘! 𝑛−𝑘 !
𝑝𝑘 1 − 𝑝 𝑛−𝑘

write as 𝑃 𝑋 = 𝑥 =
𝑛!

𝑥! 𝑛−𝑥 !
𝑝𝑥 1 − 𝑝 𝑛−𝑥 remember 𝑝 =

𝜆

𝑛

consider limit

lim
𝑛→∞

𝑛!

𝑥! 𝑛−𝑥 !

𝜆

𝑛

𝑥
1 −

𝜆

𝑛

𝑛−𝑥
= lim

𝑛→∞

𝑛 𝑛−1 ⋯ 𝑛−𝑥+1

𝑛𝑥
𝜆𝑥

𝑥!
1 −

𝜆

𝑛

𝑛
1 −

𝜆

𝑛

−𝑥

Andrew Torda 12/07/2018 [13]

from binomial to poisson

lim
𝑛→∞

𝑛!

𝑥! 𝑛 − 𝑥 !

𝜆

𝑛

𝑥

1 −
𝜆

𝑛

𝑛−𝑥

= lim
𝑛→∞

𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑥 + 1

𝑛𝑥
𝜆𝑥

𝑥!
1 −

𝜆

𝑛

𝑛

1 −
𝜆

𝑛

−𝑥

lim
𝑛→∞

𝑛 𝑛 − 1 ⋯ 𝑛 − 𝑥 + 1

𝑛𝑥
= lim

𝑛→∞

𝑛

𝑛
1 −

1

𝑛
⋯ 1 −

𝑥 − 1

𝑛
= 1

lim
𝑛→∞

1 −
𝜆

𝑛

𝑛
= 𝑒−𝜆 and lim

𝑛→∞
1 −

𝜆

𝑛

−𝑥
= 1

lim
𝑛→∞

𝑛!

𝑥! 𝑛 − 𝑥 !

𝜆

𝑛

𝑥

1 −
𝜆

𝑛

𝑛−𝑥

=
𝜆𝑥𝑒−𝜆

𝑥!
= 𝑃 𝑋 = 𝑥

Andrew Torda 12/07/2018 [14]

Poisson distribution

𝑃 𝑋 = 𝑥 =
𝜆𝑥𝑒−𝜆

𝑥!

• from average rate of events 𝜆 I can calculate the probability of seeing some
number 𝑥 events

• change simulation strategy

Andrew Torda 12/07/2018 [15]

0

0.05

0.1

0.15

0.2

0.25

0.3

0 1 2 3 4 5 6 7 8

P(n)

n

𝜆 = 2

simulation strategy

• look up rate of goals for team 1 (𝜆1) and 2 (𝜆2)

• say Pois(𝜆) is a random number drawn from poisson distribution

• a game is

𝑛1 = Pois(𝜆1) and 𝑛2 = Pois 𝜆2
if (𝑛1 > 𝑛2) team 1 wins
elseif (𝑛2 > 𝑛1) team 2 wins

else draw

• repeat many times to get probabilities

• first approach C style

Andrew Torda 12/07/2018 [16]

C programmers version of football

game <- function (mu_1, mu_2) {

team1_result <- rpois(1, mu_1)

team2_result <- rpois(1, mu_2)

if (team1_result > team2_result) {

result <- 1

} else if (team2_result > team1_result) {

result <- 2

} else {

result <- 0

}

return (result)

}

to run the game..
Andrew Torda 12/07/2018 [17]

rpois random number
from Poisson distribution

result <- c()

for (i in 1:n_games) {

result <- c(result, game(team1_mu, team2_mu))

}

w1 = length(result[result==1]); w2 = length (result[result==2])

draw = n_games - (w1 + w2)

cat ("team 1", w1, w1/n_games * 100, "%\n")

cat ("team 2", w2, w2/n_games * 100, "%\n")

cat ("draw ", draw, draw/n_games * 100, "%\n")

from 100 000 games
team 1 28630 28.6 %

team 2 43422 43.4 %

draw 27948 27.9 %

• took 10 ½ s can do much better
Andrew Torda 12/07/2018 [18]

fancy indexing
select elements
where results is 2

• games are independent events

• use vectors in R
team1_mu <- 1. # Average number goals per match

team2_mu <- 1.3

n_games <- 100000 # How many games to play

team1 <- rpois(n_games, team1_mu) generate 100000 results in one go

team2 <- rpois(n_games, team2_mu) team1/2 are long vectors

w1 <- sum (team1 > team2) sum over logicals
w2 <- sum (team2 > team1) team2 > team1 is a long logical vector

draws <- n_games - (w1 + w2)

• from 10 ½ s to 0.13 s (including printing results) let us plot results

Andrew Torda 12/07/2018 [19]

• build up text, put in "a", define colour1, colour2, setup breaks
xlim=c(0,9)

hist (team1, breaks=breaks, probability=T, main="",

col=colour1,xlab= "n goals", ylab = "frequency", xlim=xlim)

hist (team2, breaks=breaks, probability=T, main="",

col=colour2, add=T)

legend(x=3, y=0.25, legend=c("team1", "team2"),

col=c(colour1, colour2), lwd=5, box.lty=0)

text(a, x=4, y=0.3, adj=0)

• can make the plot clearer

• box and whiskers

Andrew Torda 12/07/2018 [20]

• remember the scores are in
team1 and team2

• add a command for two rows and

boxplot (df, horizontal=T, ylim=c(0,8), col=c(colour1, colour2))

• line shows median

• half box is 25 %

• dots for outliers

• histogram is not so clear

Andrew Torda 12/07/2018 [21]

• flip limits on second
histogram – no editing of
data

• some tedious placement of plots

Andrew Torda 12/07/2018 [22]

can we make football better ?

• instead of one time unit 𝜇 = 𝜆 make games 𝑛 times longer so
𝜇 = 𝜆𝑛

• put 100 000 games into a function
oneround <- function (mu1, mu2, n_games) {

team1 <- rpois(n_games, mu1)

team2 <- rpois(n_games, mu2)

w1 <- sum (team1 > team2)

w2 <- sum (team2 > team1)

draw <- n_games - (w1 + w2)

return (c(w1, w2, draw))

}

• and call this for different values of 𝜇1, 𝜇2 scaled by 𝑛
Andrew Torda 12/07/2018 [23]

more compact

How often does the better team win ?
oneround <- function (mu1, mu2, n_games) {

team1 <- rpois(n_games, mu1)

team2 <- rpois(n_games, mu2)

w2 <- sum (team2 > team1)

}

play repeatedly
mult <- seq(from = 1, to = 100, by = 1)

wins <- c()

for (m in mult) {

r <- oneround (team1_mu * m, team2_mu * m, n_games)

wins = c(wins, r)

}

• plot the results
Andrew Torda 12/07/2018 [24]

just collect
results for
team 2

Andrew Torda 12/07/2018 [25]

initial 𝜇1 = 1
𝜇2 = 1.3

• if game are 10 times longer
better team wins 62 %

• if football games are about
60 fold longer, results are
interesting

90%

what has one seen ?

Andrew Torda 12/07/2018 [26]

Did I cheat in scripts ? not much

• some code for placing plots on page, setting random seed, histogram breaks

Football results are close to meaningless

R programming

• ugly but very powerful – basic poisson competition less than 10 lines

• graphics easy, but syntax horrible

• use built-in functions

• work with vectors not scalars

more serious R

Real statistician

• would have looked up poisson race

R – these lectures too short

• much serious statistics

• interesting fitting in the Übung (general non-linear, arbitrary function)

• most R users would

• work in rcmdr, rstudio, ..

• used a higher level graphics library (ggplot2, lattice)

Andrew Torda 12/07/2018 [27]

Fitting

You are given
x y

0.09991595 0.031080097

0.09982738 -0.012845276

0.09946064 0.026970036

[.. 500 .. lines]

and asked to make sense of it.

Start with a plot

Andrew Torda 12/07/2018 [28]

Hint that it is of form

𝑦 = 𝑒−𝛽𝑥 sin 2𝜋𝜔𝑥 + 𝜑

for some

𝛽 decay rate

𝜔 frequency

𝜑 phase

• there is noise

• points are not evenly spaced

d <- read.table (datafile, header=TRUE)

plot (dx, dy, xlab = "x", ylab="amplitude")

Andrew Torda 12/07/2018 [29]

Code up the likely function

sinexp <- function (x, phase, freq, decay) {

v <- sin(2 * pi * x * freq + phase)

v <- v * exp(-decay * x)

}

• this function acts on a vector (x)

• returns a vector (v)

Have we got the right form ?

Andrew Torda 12/07/2018 [30]

Check if our function looks sensible

curve (sinexp(x, 1, 100, 30), from = 0, to = 0.1)

• sinexp() seems to be possible

Note

• curve() has a default name of x

• it takes guessing / experience to get sensible
values

• these values can also be used as starting points
for fitting

Andrew Torda 12/07/2018 [31]

non-linear least-squares fitting

• ?nls

• gives you about 330 lines of help ?nls.control gives more

• what works here ? defaults including Gauss-Newton method

We are asking R to move around in 3-parameter space, 𝛽, 𝜔, 𝜑

nlmod <- nls (y~sinexp(x, phase, freq, decay), data = d,

start = list(phase=3, freq=150, decay=30))

You may not have seen the ~ in R – used to define models

Andrew Torda 12/07/2018 [32]

reading results

Results are stored in nlmod
> nlmod

Nonlinear regression model

model: y ~ sinexp(x, phase, freq, decay)

data: d

phase freq decay

3.801 108.846 30.922

residual sum-of-squares: 0.342

Number of iterations to convergence: 10

Achieved convergence tolerance: 2.912e-06

accessing elements is a bore, but you can say coef(nlmod)[phase]
> coef(nlmod) note coef() is a function call

phase freq decay see why coef(nlmod)[phase] works ?

3.8 108.8 30.9 Andrew Torda 12/07/2018 [33]

to see if you really reproduce data

use the predict() function
plot (dx, dy, xlab = expression (italic(x)), ylab="amplitude")

pred=predict (nlmod)

lines(d$x, predict(nlmod), col = 3, lwd = 3)

Andrew Torda 12/07/2018 [34]

Summary

• R syntax is as ugly as last week

• numerical functions remarkably

• concise

• simple

Andrew Torda 12/07/2018 [35]

