Genomes and Assembly

• Ask your elderly aunt what is bioinformatics?
• Read the Hamburg Abendblatt
 • genomes
• June 2000 – human genome sort of finished
• Feb 2001 – publication of human genome
The Plan

- what does one really know? where are the problems?
- assembly
- problems
 - technical
 - repeats
 - coverage
- high and low quality
What does one really know?

Interpretation – diseases with hereditary component
- what is the gene for multiple sclerosis? type 2 diabetes?
 blood pressure?
- there is no answer (many years after first genome)

What do genes do?
- dead genes, pseudo genes, regulatory sites, ..

- Easy questions?

How many genes do I have?

Andrew Torda
02/12/2019
How many genes?

recent estimate
21,306 protein coding genes

n protein-coding genes / 10^3

1. start HGP
2. genome published
3. revision

Genome assembly

- Genome is big
- split into pieces (enzymes, mechanical, ...)
- read and sequence pieces
- put these unordered fragments together
genome assembly problem

What will happen? Most of what you imagine

• some parts – no overlap, some much overlap
• overlap with reads from different parts of genome...

lots of reads from a sequencing machine

assembly

da final genome
typical numbers

Computational problem?
• genome size
• read size \((10^2 - 10^5)\)

Just use a method that gives us \(10^5\) bases at a time?

<table>
<thead>
<tr>
<th></th>
<th>bases</th>
</tr>
</thead>
<tbody>
<tr>
<td>viroids</td>
<td>200 – 300</td>
</tr>
<tr>
<td>virus</td>
<td>(10^4 – 10^6)</td>
</tr>
<tr>
<td>prokaryotes</td>
<td>(10^5 – 10^7)</td>
</tr>
<tr>
<td>eukaryotes</td>
<td>(10^5 – 10^{10})</td>
</tr>
</tbody>
</table>
Read lengths / tradeoffs

Why do we not just use long read methods?
• errors – error rate much higher on long reads
• cost to start (cost of a machine / investment)
• cost per base
• speed / bases per day

Now consider the assembly problem
• how big is the computational problem?
how big?

Original human genome (10 years)
- \(3 \times 10^7\) reads of \(<800\) base pairs

Yeast
- \(10^7\) reads

Newer human genome
- \(10^8\) reads (shorter)

What if I have a step that needs to compare all fragments with all? \(10^8 \times 10^8 = 10^{16}\)

where would you start? is the problem like a multiple sequence alignment?
Intuitive approach to assembly (bad)

Treat like a multiple sequence alignment

• compare all against all

• find closest sequences
 • align first

• align groups of sequences with each other

• look at each column and just read the consensus

Not the right approach

• not practical – not error tolerant, gaps not wanted
Multiple Sequence alignment – why not to

Multiple sequence alignment – basic idea
- all sequences are a bit different
 - all sequences are variations on same region
 - mostly similar matches

Genome assembly
- fragments of one long sequence
- difference are errors / polymorphisms
- want exact matches
Not multiple sequence alignment

<table>
<thead>
<tr>
<th>ACG reads</th>
<th>CGATC</th>
</tr>
</thead>
<tbody>
<tr>
<td>ATCGCTT</td>
<td></td>
</tr>
<tr>
<td>CGATC CGA</td>
<td></td>
</tr>
<tr>
<td>consensus</td>
<td>ACGATTCGATCGCTT</td>
</tr>
</tbody>
</table>

What might happen?
- **CGATC** might align with **CGATC CGA**

Multiple sequence alignments allow for gaps
- not wanted here

Speed: 100 000 reads would need \(\frac{10^{10}}{2} \) alignments

Consider a different philosophy
overlap layout consensus

Two methods coming – this is the easier
find overlap – first few edges
find overlap – most edges

push aligned fragments on top of each other

hopefully all fragments are connected
layout and consensus

look down each column for consensus

Does it always work? more later
de Bruijn graphs and k-mers

2nd method

Remember blast?

- fast because it looks for identical matches (seeds)
- use fast lookups

- use this idea of quick searches for identical pieces
break into k-mers

ich mag fisch
ich_m
ch_ma
h_mag
mag
mag_f
ag_fi
g_fis
_fisc
_fisch

put them together...
the k-mers

fisch

_ch_ma_

mag

ag_fi

h_mag

g_fis

ich_m

_mag_f

_fisc

mag_f
prefixes length $k - 1$

- fisch
- ich
- mag
- ch
- ma
- ag
- fi
- h
- mag
- g
- fis
- fisc
- mag
- f
find suffixes

fisch

ich_m

ch_ma

ag_fi

mag

g_fis

h_mag

fisc

mag_f
find a node with zero inputs \textit{ich_m}

- start

find a node with no outputs – must be end \textit{fisch}
Follow path to assemble
Is this boring? Why is it faster?

- original (consensus overlap) had $O(n^2)$ comparisons
- Here we can use some tricks
- Build a table with all the k-mers you know

- run over reads once and mark k-mers with fragments

- more complicated example
aal_und_brot_und_ei
visit each edge once

aal_und_brot_und_ei
more steps to a practical version

• merging multiple reads
• errors
• repeats
• missing pieces assembling
overlaps / merging

• lots of overlaps of different regions

• a good sequencing might be 30 or 100×

• these can be merged

• all kinds of patterns are possible
If we have enough coverage there are many paths over each fragment

Random errors give you an unexpected path
• bottom paths can all be merged

If many paths agree the orange one is an error

Discuss error sources later
k-mer length

- only relevant to de Bruijn method
- how long is k?

Tactics
- try values up to about 80% of typical read length
- If k is too big you get many disconnected graphs (next slide)
can you assemble a genome yet?

- do your best to follow graph
- visit each edge once..

Data is not perfect
- many separate, contiguous pieces, not joined to each other

solution – use some reference
reference genomes

correct answer.. (not known)

using available information you have...

a set of contiguous pieces (contigs)

Need some way to assemble them to a best guess
• use some reference from the literature
using a reference genome

real genome

contigs

reference related species

some related species

• good quality genome from literature
• for monkey, use man – for schäferhund use chihuaha..

Andrew Torda
02/12/2019 [36]
align each fragment to reference

real genome
contigs
reference
related species
order
fragments
remove gaps
Reference genome

Needs an *ab initio* genome
- expensive, long reads + short reads + computational effort

As of 2019
- 235 assemblies for human genome from 2014 to 2019

Most genomes today
- are not expensive slow *ab initio*
- use a reference genome

Danger
- if your reference is not close enough – there will be mistakes
Problems

- repeats
- errors
- natural variance
repeats

probably works

genome

{ long reads

will not be correct – short reads

{ short reads

assembled genome

Andrew Torda
02/12/2019
short reads and repeats

If two sequences can give the same patterns, you will pick the shorter.

If read length < typical repeat length
- you lose
- you cannot assemble an *ab initio* high quality genome

Can we just use longer reads?
- not if you do not have the machine
- longer reads are error prone (better answer for klausur)
Useful repeat example – proteins that give DNA structure

- require similar non-binding sites on DNA
- repetitive, but important

Transposons, LTR = long terminal repeat
- substantial fraction of human genome
- evolutionary reason for a repeat to repeat?

Repeats are hard to characterise
- sometimes not important – sometimes functional
Repeats – what to do

1. do not worry – live with it (not for klausur)
2. buy a machine with longer reads and keep acquiring data
3. paired ends and distances
 QRabababababST

can you use some experimental method (e.g. electrophoretic) to estimate distance R..S?
Is there a correct genome?

In one person

ACTAG father
ACCAG mother

Whose gene? Yours? Mine?

- human genome project(s) – different people

Example problem

- you are recessive for haemophilia
- your recessive (bad) gene goes into the databases
How much variance is there?

little
- we talk about the human genome

lots
- we can do DNA fingerprinting

How many bases in you cannot be explained by parents?
- $10^1 - 10^2$

More detail later
An easy question
- ...
error types

Random
- if I read more than once I will get different errors
- just make more reads

Systematic
- example: after a G, greater chance of error
- could recur with multiple reads

<table>
<thead>
<tr>
<th></th>
<th>error rates</th>
</tr>
</thead>
<tbody>
<tr>
<td>short reads</td>
<td>0.2 – 2.5 %</td>
</tr>
<tr>
<td>long reads</td>
<td>10 %</td>
</tr>
<tr>
<td>Sanger</td>
<td>< 0.1 %</td>
</tr>
</tbody>
</table>

How big?
What are errors
- wrong base C instead of T
Errors

1. before we start... not for these contamination, mis-labelling, lectures preparation, degradation, primer bias

2. machine reads wrong base / jumps relevant over a base

3. misassembly
Machine errors – phase error

Different techniques, different properties – in general

- phase error
Machine errors – base calling

Intensity of A might be similar to G or ...

wrong base is read → bases read

coverage

Most common quality measure

• my genome has n_g bases
• I sum up all my reads $n_r = \Sigma_i n_{\text{read}_i}$ so I have read n_r bases

On average, each base has been seen $\frac{n_r}{n_g}$ times = coverage

Good estimate? Why not?
Better statistical model

Customers in a shop, football goals, pedestrians at lights

Average = 5 / 5 hr = 1/hour, but
• sometimes nobody comes for an hour
• events not correlated

Standard problem – use a Poisson distribution
• \(\lambda \) is average number events / time

\[
p(n) = \frac{e^{-\lambda} \lambda^n}{n!}
\]

what does it look like?
customers in shop, ion channel opening...

how often do we see n events?

average number of customers per hour is $\lambda = 1$

$\lambda = 5$

$\lambda = 10$
from customers to base reads

similar question

be practical
Imagine a genome 3.3×10^9 bases

- if $\lambda = 5$, $p(0) = 0.007$
 2×10^7 bases are not sequenced

- if $\lambda = 10$, $p(0) = 4.5 \times 10^{-5}$
 1.5×10^5 bases not touched

- what if I have a bacteria with 10^6 bases
 $10^6 \times 4.5 \times 10^{-5} = 45$ bases not sequenced

Do not take numbers too seriously
approximations

• I have left out read lengths
• Poisson is not quite appropriate

Important
• 10-fold coverage does not mean each site has been seen 10 times
• n-fold does not mean...

• n-fold coverage does not mean there are no mistakes
executive summary

Is it possible to get a near perfect genome?
• should we use lots of long reads?
• lots of money and time (years for human genome)
 • probably never perfect
Practical genomes have errors

Errors
• random – can be removed with much sequencing
• systematic – need even more sequencing

Repeats
• rarely resolved, but very common in eukaryote genomes
What do you want?

- Quickly compare two species? Cheap genome with errors
- Find variants in human genes? Expensive slow genome

Relevant to later topic
- A gene variant (single nucleotide variant) looks like a reading error
- A rearrangement looks like an assembly error
No more gene assembly
Open Reading Frames and genes

Lots of genomes – not many diseases cured, revelations

• what products are made in which cells?
• how are they spliced?
• how are they regulated?...
• which proteins are made in children / under stress / …?

More fundamental

• can you look at the human genome and say
• "here are the genes"?
How much of genome is useful?

- Prokaryotes? Most of the genome
- People? 2 – 60%

General claim
- bacteria / archea
 - simpler, smaller, no ethical problems in experiments
- animals
 - nasty – most of genome does not code for proteins
- plants
 - very nasty – huge genomes, much duplication
human genes how many?

- $2 - 3 \times 10^4$ protein genes
- experimentally likely (gencode)

<table>
<thead>
<tr>
<th>Genomic Region</th>
<th>Count</th>
</tr>
</thead>
<tbody>
<tr>
<td>Protein coding</td>
<td>2.0×10^4</td>
</tr>
<tr>
<td>RNA non-coding</td>
<td>2.4×10^4</td>
</tr>
<tr>
<td>Pseudogenes</td>
<td>1.5×10^4</td>
</tr>
</tbody>
</table>

What is the task in a popular eukaryote genome?
- finding the few coding regions in a huge soup

In a prokaryote?
- finding start points and removing the small amount of other material
Two tasks

Tasks
1. Find the reading frame
2. find start / stop / introns

Methods
- *de novo / ab initio* (look at just one genome)
- homology
finding the reading frame

- recurring theme
- six possibilities
three different reading frames

>A01592.1 Human haemoglobin A beta chain
GTGCACCTGACTCCTGAGGAGAAGTCTGCCGTTACTGCCCTGTGGGGCAAGGTGAACGTGGATC... TTCAGGCTCTCTGGGCAACGTGCTGGTCTGTGTGCTGGCCCATCAGACCATACCTACC

CCACCAGTGAGGCCTGCTATCAGAAAGTGGTGCTGTGGGTGGCTAATGCCCTTGCCCCAGATATTCAC

VHLTPEEKSAVTALWGKVNVDEVGEALGRLLVVYPWTQRFFESFGDLSTPDAMGMPKVKAHG
KKVLGAFSDGLAHLDNLKGTFTALSELHCDKLHVDPENFRRLLGNVLVCVLAHFFGKEFTPPVQA
AYQKVVGAVANALAHKYH

CTStopLLRRSLPLLPCGARStopTWMKLVVRPWAGCWSTLGPRGSLSPGLGICPLLMLLWATLR
StopRLMARKCSVPLVMAWLTWTTSRAPLPHStopVSCTVTSTCTWILRTSGSWATCWSVCWPI
TLAKNSPHQCRKLPIRKWWLVWLMPWPTSI

APDSStopGEVCRYCPVGQQGERGStopSWWStopGPGQAAGGLPLDPEVLSStopVLWGSVHSSt
gpCCYGQStopGEGSWQESARCLStopStopWPGSPGQPOPQGHLCHTESStopAALSStopQAARG
SStopELQAPGQRAGLCAGPSLWQRIHPTSAGCLSESSEGGWCGStopCPGPQVS

02/12/2019 [64]
How long are proteins?

- Experimental

- Frequency (length)

- Length (amino acids)

- Random stops every 21 codons

- $p(l) = \frac{3}{64} \exp\left(\frac{-3}{64}l\right)$

use frame with longest sequences?

Proposal
- Try six reading frames
- pick one which leads to longest sequences

Would it work?
- often
- not enough for long genomes
length of random sequences

Random sequences about \(\frac{3}{64} \) would be stop codons:
average length between stops \(\approx 64/3 \)

Random sequences \(p(l \geq 60) \approx 0.06 \)
\(p(l \geq 200) \approx 10^{-5} \)

Genome \(10^9 \) bases
\(\rightarrow 10000 \) stretches of more than 200 with no stop codon \(\left(10^9 \times 10^{-5}\right) \)
picking the wrong reading frame would give \(10^4 \) long sequences

\(p(l > x) \) is probability of seeing length \(l \) longer than \(x \) bases

Andrew Torda
02/12/2019
length is helpful, but not sufficient
What else characterises the reading frame?

In each of six frames

- count how often each of 64 codons occurs
codon frequency

Example

E. coli has

- CTG (leu) as very frequent codon
- AGG (arg) very rare codon

You should not see ACG very often

- can we formalise this? Invent a score?
Score for codon usage

For some stretch of DNA

- we have codons 1, 2, 3, .. 64
- observed frequency of codon 1 in your sequence p_{1}^{obs}
- expected frequency of codon 1 is p_{1}^{exp}
- score

$$\prod_{i=1}^{64} p_{i}^{obs} \cdot p_{i}^{exp}$$

When is score maximal?

Normalisation or complication?

- we are only interested in comparing six reading frames
Start of reading frames?

Start signals **AUG**
- only about 83% in *E. coli*
- many (thousands) of exceptions in eukaryotes

- eukaryotes? Alternative protein forms + diseases

- Put all of this together... Find the reading frame for each of six possible reading frames
 - probability based on protein length (longer = better)
 - \times probability based on codon composition
 - \times probability based on start codon
Finding a coding region

Prokaryotes and mitochondria... little junk
- coding
- regulatory
- RNA genes

Eukaryotes... > 98 % probably junk

Several programs
- general philosophy
gene signals

Find possible reading frames then

- Each protein-coding gene has
 - start codon
 - stop
 - stop – start position = length

- ribosome binding site

Consider two approaches
rule-based

- find all possible starts (ATG/GTG/TTG) and score them
- find all stops and mark regions between as candidates

- use table of known ribosome binding sites – score probability
 - 3-4 bases early GGA, GAG, AGG...
 - 5-10 bases early AGxAAG, AGGxGG

- calculate length of implied protein
 - lookup probability of this length protein

- rank all guesses by their score/probability
more sophisticated

- do not explicitly think of ribosome initiation
- do not rely too much on known initiation sites

belief
- there is some pattern that precedes each protein
 - maybe within base-pairs
- proteins start with one of a small set of triplet
 - maybe ATG/GTG/TTG sometimes not
- introns and exons have characteristic sequences

requires
- some list of correct proteins / corresponding sequence

Example
For three bacteria
- what is the probability of each base type at preceding positions?

Summarise these ideas:
Gene finders are
- trained / calibrated using species-specific, known information
- using
 - initiation codon
 - probabilities of preceding bases
 - expected protein lengths

Using homology / similarity

Everything so far

- based on looking at one genome alone. Much better:

Imagine you have databases full of proteins
- from many species
- mostly correct

Take any DNA sequence
- get 6 reading frames
- translate each to amino acid sequence
- do a database search

- Only one reading frame will find known proteins
- in this region – search for a start and stop codon
Homology searching for genes

Preferred approach
• very fast (blastx)
 • translates in six reading frames and does a search
 • gives you the literature function (annotation) for a gene if present

Will you find genes
• for some new monkey? (lots of primate sequences)
• for an exotic fungus that causes some nasty disease?
• a south American plant which is a possible future food?

Summarise all the problems
Problems

de novo searching
- lots of false negatives (missed genes)
 - unusual initiation properties
 - too long or too short

Searching with homology
- requires a source of related proteins
- propagates existing errors
 - wrong annotations / functions
 - genes that really do not exist
- pseudogenes

All methods – suffer from errors in genome assembly
What proteins are made and how much?

RNAseq

Two questions about transcription

• what genes are transcribed?
• how are proteins spliced?

First... how helpful are genomes?
problems with genomes

So far most of semester has focussed on either
• protein sequences or
• DNA sequences

Most of genome is junk DNA (controversial)

You do not know every reading frame
• of those frames (putative proteins)
 • which are dead genes / pseudo genes ?
 • which genes are active in which cell types
 • what are the splice products ?

You do not really know what is being made from genome
Regulators – interesting but not for today

- proteins
 - look at directly? proteomics
- nucleotide approaches (to measuring proteins)?

First consider proteomics
Proteomics (not here)

What proteins have been made in a cell? some fluid? some sample?

<table>
<thead>
<tr>
<th>tissue</th>
<th>digestion</th>
</tr>
</thead>
<tbody>
<tr>
<td>cell</td>
<td>fragmentation</td>
</tr>
<tr>
<td>tears / blood</td>
<td>electrophoresis</td>
</tr>
<tr>
<td>phloem</td>
<td>mass spec</td>
</tr>
<tr>
<td></td>
<td>database lookup</td>
</tr>
</tbody>
</table>

list of proteins
- sequences
- quantities
Proteomics

Does measure proteins, but..
• analysis is very dependent on known proteins
• distinguish α- / β- haemoglobin (sequences similar)?
• could you recognize a new splice form?

Can you look at nucleotides instead?
• cheap and fast
• very sensitive

• not so direct
Microarrays

Looking for some known products
• wash sample over chip
• detect fluorescence, precipitation

• fast
• can work with modified bases
 • used by Prof Ignatova to look at tRNA

• limited to known sequences
RNAseq

DNA → RNA → select enrich remove rRNA → RNA → cDNA → many short reads

proteins

• very indirect
• very sensitive
• not limited to lists of known products

protein information products & quantities

this lecture
Two issues
• mapping
• quantification

What is the mapping problem?
Mapping - simple quantification

starting point
• soup of short DNA reads

Get a reference genome
• map to reference
Intuitively

- **red** is very much expressed
- **green** not expressed

Assumptions – we measure DNA and align it

- amount of DNA reads depends on amount of RNA
- amount of RNA reflects protein being synthesised (or RNA or some other biochemistry)
Quantification

Different questions
1. response to changing conditions
 • hot / cold, food / hungry, antibiotic...

2. what proteins are being made?
 • is this protein unique to nerves / liver / ... ?

The issue
• normalising / references / absolute levels
Relative changes

Plot logarithm of changes from experiment₁ and exp₂
systematic relative changes

We have two measurements
• what will happen with sensitivity differences?
• we want $\log \left(\frac{n_{\text{hungry}}}{n_{\text{wellfed}}} \right)$ but we measure $\log \left(\frac{n_{\text{hungry}}}{c \cdot n_{\text{wellfed}}} \right)$

$$\log \left(\frac{x}{a y} \right) = \log \frac{x}{y} - \log a \quad \text{so we get a shift of blue line}$$

If we are just looking at changes
• do not need absolute quantities
• can tolerate some systematic change in sensitivity
Problem with relative measurements

What if conditions generally suppress/enhance translation?

• needs another reference

Properties of known [RNA]?
Known RNA quantities

- kits available
 - called "spike-in"
 - should have
 - GC content – should be similar to your sample
 - length – lets you check for length bias

Last part of measuring gene expression...
How much of a gene is expressed?

By chance you expect more reads from red gene

- if you want to talk about how much protein is made

\[
\frac{n_{\text{reads}}}{n_{\text{length}}}
\]

Only works if you have

- reference genome
- annotated genes

summarise all these steps
Quantification

Relative levels of expression
• simplest

Control for overall suppression / enhancement, different measurements
• "spike-in" known [RNA]

Quote amount of protein
• divide by sequence length
read mapping problems

General problems – sequence information
- sequencing errors
- genomic variation
 - my protein may not be found on your reference
- repetitive elements

RNA-seq specific problems
- spliced alignments – makes it much more interesting
Splice variants

How many genes do we have?
• 2×10^4

How many proteins do we have?
• 10^5 to 10^7 or ...

What is the difference between a nerve cell and a liver cell?
1. which genes are turned on
2. how the pieces are put together
gene with three exons

various splicing events

possible RNA/proteins

What if we had four, five, .. exons ?

What does one need to see the variants ?
Enough to say this gene has been seen 8 times?

Better explanation of data:

one annotated gene in reference genome
DNA reads

but would you know this?
What does one need?
Essential: reads covering the splice site
- basis of most isoforms in databanks

Computational considerations
- early description:
 pick reference genome for each fragment
 map to gene fast
 add to counts

quick, but not helpful
finding splices

More complicated
pick reference genome
for each read
 if maps to genome
 do counts
 else slow
 look for partial maps
 look for nearby mapping of other parts

Is this practical?
• expensive, but can be done
• not routine
Limited splice searching

Maybe you are only interested in characterising one family

• from proteomics/other RNAseq you suspect that gene X behaves differently in some disease

pick reference genome
for each read
 if maps to gene X
 if maps to genome
 do counts
 else
 look for partial maps
expensive careful search

• very practical
• assumes you have an idea what you are doing
Do you need a reference genome?

No

- If you have enough reads
 - lots of overlap...
Do you need a reference genome?

Could treat the problem as genome assembly

• results will be very different
 • only get sequences that are translated to RNA
 • but this would be terrific

The transcriptome
The transcriptome

Invaluable

- everything that is transcribed in an organism/tissue/sample
- If coverage is good enough
 - includes all splice products

Needs

- lots of coverage
- lots computer time
Problems

Most of problems of sequencing

- RNA (cDNA) may
 - not map to any place
 - errors variation
 - map to more than one place
 - short repetitive
 - similar sequences
 α- vs β-haemoglobin chains, dead / pseudo-genes
- you may not have a reference or good reference
 - use wrong bacteria strain
 - use monkey genome for man