No Atoms

So far

• atoms \rightarrow coarse grained \rightarrow lattices

Today – the holistic lecture

• from reaction kinetics to substitution matrices

What if we forget atoms and residues ?

• Kinetics / dynamic systems

• A
$$\rightarrow$$
B breakdown of A, $\frac{d[A]}{dt} = k[A]$

- foxes and hares $\frac{dn_h}{dt} = \alpha n_h \beta n_h n_f$ and $\frac{dn_f}{dt} = \gamma n_h n_f \delta n_f$ n_h, n_f number of hares and foxes
- complicated kinetics bacterium eats 10 different nutrients, makes 10 waste products, interconversion of nutrients

Andrew Torda July 2019, Struct and Sim

Plan

- simplest systems
 - one or two reactants
- treatment of more complicated systems
- transition matrices in sequences

Different approach next lecture

• handling very low probabilities

Simplest systems

- one species breakdown / radioactive decay
- $A \rightarrow B$ or A disappears
- philosophy
- we know the average disappearance of A
- Each molecule has an equal chance of breaking down $\frac{dA}{dt} = -kA$

 $=A_0e^{-kt}$

$$\frac{dt}{dA} = -\frac{1}{k} \frac{1}{A}$$
$$t = -\frac{1}{k} \ln A - \frac{1}{k} \ln c$$
$$\ln A - \ln c = -kt = \ln\left(\frac{A}{c}\right)$$
$$\frac{A}{c} = e^{-kt} \quad \text{so } A = ce^{-kt} \text{ or } A$$

not unexpected

forward and backward reactions

 k_1 2A \rightleftharpoons B so 2A \rightarrow B and rate of disappearance is $k_1 A^2$, rate of appearance is $k_2 B$ k_2

$$\frac{dA}{dt} = -2k_1A^2 + 2k_2B \qquad \text{and} \ \frac{dB}{dt} = k_1A^2 - k_2B$$

Theme

lots of processes are easiest to describe in differential form (rate of change) These are easy enough to do by hand Make it more complicated

An enzymatic reaction

$$\frac{dE}{dt} = -k_1 E \cdot S + k_2 ES + k_3 ES$$

$$\frac{dS}{dt} = -k_1 E \cdot S + k_2 ES$$

$$\frac{d ES}{dt} = k_1 E \cdot S - k_2 ES - k_3 ES$$
$$\frac{dP}{dt} = k_3 ES$$

let us rewrite..

$$\frac{dE}{dt} = -k_1E \cdot S + k_2ES + k_3ES$$
$$\frac{dS}{dt} = -k_1E \cdot S + k_2ES$$
$$\frac{dES}{dt} = k_1E \cdot S - k_2ES - k_3ES$$
$$\frac{dP}{dt} = k_3ES$$

$$\begin{pmatrix} dE/dt \\ dS/dt \\ dES/dt \\ dP/dt \end{pmatrix} = \begin{pmatrix} -1 & 1 & 1 \\ -1 & 1 & 0 \\ 1 & -1 & -1 \\ 0 & 0 & 1 \end{pmatrix} \times \begin{bmatrix} k_1 E \cdot S \\ k_2 ES \\ k_3 ES \end{bmatrix}$$

- We have a matrix form
- What is $k_1 E \cdot S$? (and next terms)
- you would usually say velocity vector v
- we can describe everything as
 s = Nv

General approach to kinetics

- "differential form" of kinetics
- applicable to most reactions How is it helpful ?
- $\frac{dA}{dt}$ is a velocity in one dimension
- velocity of A depends on where A is, B is, ...
- how to predict behaviour of system ?
- For some initial A_t say $A_{t+\Delta t} = A_t + v\Delta t = A_t + \frac{dA}{dt} \Delta t$
 - numerical integration exactly as in Newtonian dynamics
 - do the same for *A*, *B*, *C* ...
- Not just in this lecture maple, matlab, deSolve in R, ..

Even more general

- We have a number of states *i*, *j*, . . starting materials, products, intermediates
- we have a finite amount of material
 - use the term probability p_i for convenience and consistency
- $p_i(t + \delta t)$ depends on initial value, flux in and flux out

 $p_i(t + \delta t) = p_i(t) + \delta t \Sigma_{i \neq j} k_{ji} p_j(t) - \delta t \Sigma_{i \neq j} k_{ij} p_i(t)$

 k_{ab} is rate constant for $a \rightarrow b$

- or given a set of reactants and a matrix of k's (rate matrix)
 - we can model the system
- if we say $v_{ij} = p_i k_{ij}$ what is the meaning of equilibrium ? Every $v_{ij} = v_{ji}$
 - for an arbitrarily complicated system
 - I can find the set of p ... equilibrium concentrations

the master equation

In chemical modelling, physical processes, work with master equation

Modelling in engineering

- put all components and possible routes into numerical bucket
- find steps which are bottle-necks
- effect of alternative pathways, think of multitude of protein folding pathways

Last property

- the state at $t + \delta t$ depends on state at t and rate constants
- no dependence on previous states = Markov process
- what is the connection to sequences and mutations ?

Markov processes and mutations

First – more general idea of transition matrices / Markov Chains

My system is described by a vector of probabilities – think amino acids at a site

$$\mathbf{p} = \begin{bmatrix} p_A \\ p_G \\ p_C \\ \dots \end{bmatrix} \text{ for ala, gly, cys, } \dots$$

 p_{AB} probability of a transition AB but we have lots of them

A Markov transition matrix

	D	E	•••	W
D	p_{DD}	p_{DE}		p_{DW}
E	p_{ED}	p_{EE}	•••	p_{EW}
•••		•••	•••	
W	p_{WD}	p_{WE}		p_{WW}

Only valid for short times

- $D \rightarrow E OK$
- $D \rightarrow S \rightarrow T \rightarrow A \rightarrow D \rightarrow E$ something different

In Markov / probability framework rows sum to 1

Applying a matrix

- imagine three kinds of amino acid, $\mathbf{P} = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$
- population E, D, W = 0.4, 0.4, 0.2
- at time $t + \delta t$

$$\begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.4 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0.7 \cdot 0.4 + 0.2 \cdot 0.4 + 0.1 \cdot 0.2 \\ 0.3 \cdot 0.4 + 0.6 \cdot 0.4 + 0.1 \cdot 0.2 \\ 0.1 \cdot 0.4 + 0.1 \cdot 0.4 + 0.8 \cdot 0.2 \end{bmatrix}$$

- gives us the new state of the system
- is this a substitution matrix ?

comparison with a substitution matrix

blosum62:

ILKMF ARND С 0 E G H P S Т YV 4 -1 -2 -2 0 -1 -1 0 -2 -1 -1 -1 -1 -2 -1 1 0 -3 -2 0 Α R -1 0 -3 -2 2 -1 -3 -2 -1 -1 -3 -2 -3 5 0 - 2 - 30 -2 1 -3 -3 0 -2 -3 -2 1 0 -4 -2 -3 N -2 0 6 1 - 30 0 0 6 - 3 0 2 -1 -1 -3 -4 -1 -3 -3 -1 0 -1 -4 -3 -3 D - 2 - 21 0 -3 -3 -39 -3 -4 -3 -3 -1 -1 -3 -1 -2 -3 -1 -1 -2 -2 -1 0 -3 -2 0 -3 -1 0 -1 -2 -1 -2 0 -1 1 0 0 -3 5 2 -2 1 5 -2 0 -3 -3 1 -2 -3 -1 0 -1 -3 -2 -2 E -1 0 0 2 - 42 0 -1 -3 -2 -2 6 -2 -4 -4 -2 -3 -3 -2 0 -2 -2 -3 -3 G 0 -2 8 -3 -3 -1 -2 -1 -2 -1 -2 -2 2 -3 H -2 0 -2т -1 -3 -3 -3 -1 -3 -3 -4 -3 4 2 -3 1 0 -3 -2 -1 -3 -1 3 к -1 2 0 - 1 - 31 1 - 2 - 1 - 3 - 25 -1 -3 -1 0 -1 -3 -2 -2 5 $M - 1 - 1 - 2 - 3 - 1 \quad 0 - 2 - 3 - 2 \quad 1$ 2 -1 0 -2 -1 -1 -1 1 F -2 -3 -3 -3 -2 -3 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 1 3 -1 P -1 -2 -2 -1 -3 -1 -1 -2 -2 -3 -3 -1 -2 -4 7 -1 -1 -4 -3 -2 0 -1 -2 -2 0 -1 -2 -1 1 -3 -2 -2 S 4 Т 0 -1 0 -1 -1 -1 -1 -2 -2 -1 -1 -1 -1 -2 -1 1 5 -2 -2 0 W -3 -3 -4 -4 -2 -2 -3 -2 -2 -3 -2 -3 -1 1 -4 -3 -2 11 2 -3 **Y** -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1 3 -3 -2 -2 2 7 -1 0 -3 -3 -3 -1 -2 -2 -3 -3 3 1 -2 1 -1 -2 -2 0 -3 -1 4 V

where do blosum and PAM come from ?

Take related sequences – no alignment errors

Count mutations (transitions) for each AB pair

Correct for the amount of A, B $(p_A, p_B, ...)$

WWYIR	CASILRKIYIYGPV	GVSRLRTAYGGRK	NRG
WFYVR	CASILRHLYIRSPA	GVGSITKIYGGRK	RNG
WYYVR	AAAVARHIYLRKTV	GVGRLRKVHGSTK	NRG
WYFIR	AASICRHLYIRSPA	GIGSFEKIYGGRR	RRG
WYYTR	AASIARKIYLRQGI	GVGGFQKIYGGRQ	RNG
WFYKR	AASVARHIYMRKQV	GVGKLNKLYGGAK	SRG
WFYKI	AASVARHIYMRKQV	GVGKLNKLYGGAK	SRG
WYYVR	TASIARRLYVRSPT	GVDALRLVYGGSK	RBG
WYYVR	TASVARRLYIRSPT	GVGALRRVYGGNK	RRG
WFYTR	AASTARHLYLRGGA	GVGSMTKIYGGRQ	RNG
WFYTR	AASTARHLYLRGGA	GVGSMTXIYGGRQ	RNG
WWYVR	AAALLRRVYIOGPV	GVNSLRTHYGGKK	DRG

transition matrix versus blosum (PAM, JTT, Gonnet, ..)

Philosophically related – slightly different

- a substitution matrix is a log-odds creation $\log \frac{n_{AB}^{obs}}{n_{AB}^{exp}}$
 - scaling does not matter
- a transition matrix is based on formal probabilities
 - if we have a composition vector **v** elements sum to 1
 - after multiplication, still sum to 1

Similarities ...

• application to longer times

longer times

- transition matrix tells me about some change Δt
- $\mathbf{p}_{t+\delta t} = \mathbf{P}\mathbf{p}_t$ for composition vector \mathbf{p} and matrix \mathbf{P}
- then at next time
- $\mathbf{p}_{t+2\delta t} = \mathbf{P}\mathbf{p}_{t+\delta t}$ or $\mathbf{P}\mathbf{P}\mathbf{p}_{t+\delta t}$
- to go to longer times, repeatedly multiply the matrix
- what happens ? diagonal elements represent conservation (p_{AA})
 - probability mass moves away from diagonal
- basis of PAM 100, PAM 200 ... substitution matrices
- when doing alignments, one should use the correct substitution matrix

infinite time

- I have a system described by probability of states **p**
- I repeatedly multiply by a realistic $\mathbf{P} \dots \mathbf{P}^{\infty} \mathbf{p}$
- does my distribution disappear ? become flat ?
- with infinite time everything becomes equally likely
- realistic ? No
 - alignments become less reliable with evolutionary time

Summary so far

- chemical kinetics, mutation trajectories, fox + hare populations
 - examples of dynamic systems very similar methods to treat them
 - allows one to treat complicated kinetics
 - usually simulated by numerical integration
- systems biology problems ? the same ?
 - sometimes yes sometimes neglect conservation of mass and formal treatment
- a Markov process state at $t + \delta t$ depends on state t
 - do not talk about second order or n^{th} order processes
- everything so far depends on bulk properties
 - what happens if you only have a few molecules ? small numbers ? Last lecture

Andrew Torda summer semester 2019, Struktur & Simulation

02/12/2019 [19]

 $\frac{1}{6}$ chance of going backwards (away from equilibrium)

Stock market

- yesterday trade at $\in 10$
- buy offer at \in 9, sell at \in 11
- widow decides to sell husbands shares at \in 9
- report of 10% share price drop
- you are asked to judge the significance
 - simulate how often it happens by chance

Queuing simulations

• shops, transport

more low copy dynamic systems

Lotka-Volterra

- foxes and hares $\frac{dn_h}{dt} = \alpha n_h \beta n_h n_f$ and $\frac{dn_f}{dt} = \gamma n_h n_f \delta n_f$ n_h, n_f number of hares and foxes
- but what if fox/hare meetings are not so common ?

Dilute chemistry ?

- lac repressor < 40 copies per cell well studied, classic DNA regulator
- what are chances of a protein repressor drifting through a cell and finding exactly the right piece of DNA ?

Epidemiology

• states – healthy, sick, immune

Simulating rare events

Two aspects

- when do events occur ?
- what to do ?

Frequencies of rare events

Events are not correlated

- this particle is independent of that one
- calls into help line are independent
- flood in this time not correlated with some other time Average μ is known – number of events in a time period in time *t*
- average number of calls in day, Geiger counter counts / s, ..
- later use rate λ so in time $t, \mu = \lambda t$
- average time between events ? $\tau = \lambda^{-1}$

(check dimensions here)

Two names will keep coming up

- poisson distribution think of μ
- exponential distribution think of τ

Poisson

Used for next step

What is the probability of *n* events in time *t* ?

 $P(x = n) = e^{-\mu} \cdot \frac{\mu^n}{n!}$ $\mu = 2 \quad \text{but probability of seeing}$ $2 \text{ events is only} \approx \frac{1}{4}$

how to derive ? Do derivation of binomial and take limit

time between events

We have $P(x = n) = e^{-\mu} \frac{\mu^n}{n!} = e^{-\lambda t} \frac{\mu^n}{n!}$

- something does not happen for τ , then happens
- zero events over some $t ? P(x = 0) = e^{-\lambda t} \frac{\mu^0}{0!} = e^{-\lambda t}$

This means the first event happened at τ and $\tau > t$ so

- $P(\tau > t) = P(x = 0) = e^{-\lambda t}$ but then probability of an event is
- $P(\tau \le t) = 1 P(x = 0) = 1 e^{-\lambda t}$
- Cumulative probability over all τ is $1 e^{-\lambda t}$
- instantaneous probability for some *t* will be the derivative

time between events

Cumulative probability over all τ is $1 - e^{-\lambda t}$

Instantaneous probability for some *t* will be the derivative $\frac{d}{dt}P(T \le t) = \frac{d}{dt}(1 - e^{-\lambda t}) = \lambda e^{-\lambda t}$

• distribution of gaps between events τ is $\lambda e^{-\lambda t}$ or exponential distribution

Formally, τ is a random variable drawn from $f(\tau, t) = \lambda e^{-\lambda t}$

• back to simulation question

simulating with rare events

- λ is 10 events a second or 20 calls an hour or ...
- define our time step as τ because τ is the time between events

Simulate

while $(t < t_{max})$ pick τ from $P(\tau = t) = \lambda e^{-\lambda t}$ $t := t + \tau$ do something

Bit more complicated

more than one event type

 $\begin{array}{ccc} k_1 & k_3 \\ E+S \rightleftharpoons ES \rightarrow E+P \\ k_2 \end{array}$

- three reactions each is a poisson process
- total poisson process
 - I have A's and B's happening independently
 - I see μ_A events and μ_B events
 - total μ_0 is just $\mu_A + \mu_B$ so I can just add up λ 's
- $P(x = n) = e^{-\mu} \frac{\mu^n}{n!}$ μ is the average number of times something happens
- add up the rates, say $\lambda_0 = \sum_{i=1}^{N_{rates}} \lambda_i$
- $P(x = n) = e^{\lambda_0 t} \frac{\mu^n}{n!}$ or maybe you prefer $P(x = n) = e^{-\mu_0} \frac{\mu^n}{n!}$
- we can draw timestep from this distribution, but what happens there ?

$$\mu_0 = \lambda_0 t$$
 total events per time

• simulate

while $(t < t_{max})$ pick Δt from $P(\tau = t) = \lambda_0 e^{-\lambda_0 t}$ $t := t + \tau$ pick a reaction

choosing a reaction

 N_{λ} rates each λ_i (three in previous example)

• probability of reaction *i*

$$p_i = \frac{\lambda_i}{\sum_j^{N_\lambda} \lambda_j}$$

implementation to choose which reaction happens

• make a table of
$$q_i = \sum_{j=1}^{i} p_j$$

r = rand(0..1)
for (i = 0; i < n; i++) {
 if $r < q_i$ { return i}}
 $p_i \qquad q_i$
0.2 0.2
0.3 0.5
0.5 1.0

The Gillespie algorithm

- $\mu_0 = \lambda_0 t$ total events per time
- calculate rate λ_0
- simulate
- while $(t < t_{max})$ pick τ from $P(\tau = t) = \lambda_0 e^{-\lambda_0 t}$ $t := t + \tau$ pick a reaction from regine on pr

pick a reaction from recipe on previous slide update rates (λ 's) since quantities have changed

What did Mr Gillespie find ?

1977 computer graphics..

Gillespie, D.T. J. Phys. Chem. 81, 2340-2361 (1977)

Why do Gillespie simulations?

You already know average behaviour from classic kinetics

• You can predict $[Y]_t$ but it is an average

Run simulation 1000 times

- gives you $[Y]_t \pm \sigma_Y$
- can predict fluctuation around equilibrium values

Gillespie-style Methods

Back to cell with one DNA + 40 copies of repressor

- from some estimates of kinetics, can predict
 - average occupancy
 - lifetime of bound state
 - fraction of time DNA site is occupied, confidence intervals

Stock exchange example

• you hear of a 10 % drop in share price – has something really happened ?

These methods give you

• errors / fluctuations / significance / confidence intervals

Extensions / Applications of Gillespie method

Fuchsen + blue hares and red hares

- move randomly, meet randomly fox + hare \rightarrow fox
 - widely used in eco-system modelling

Spatial diffusion problem in cells

- for a particle in box_1 , $box_1 \xrightarrow{k} box_2$
 - diffusive simulations + chemistry states are mixture of chemistry and location

Finance

• few sellers and buyers

Alternative philosophy

A particle moves is hit by other particles

- you do not want to model the particles explicitly
- a chemical trajectory with side reactions

Adding noise to systems

Examples here

- Gaussian (normal) noise
 - mean $\mu = 0$
 - call my noise W(t) means $\mu = 0$ and variance $(\sigma^2) = t$
 - not obvious Brownian processes you move randomly

Want to build noise into normal simulations

• Normally (Newtonian dynamics, chemical kinetics) – simple integrator $\frac{dx}{dt} = f(x)$ where f comes from a force or chemistry rate of change and we have just said $x_{n+1} = x_n + \Delta t f(x)$

use W(x) – Wiener process

 $x_{n+1} = x_n + \Delta t f(x)$ can also write

 $x_{n+1} = x_n + dx$

if I have a random process W $x_{n+1} = x_n + dW$

Meaning of dW?

- W(t) is the fluctuation over t random variable from Gaussian (0,t)
- dW also a random variable $\sqrt{\Delta t}$ · gaussian(0, t) more concisely $\sqrt{t}N(0, t)$ usually use N() to represent Gaussian random number

integrate over random variable

$$\frac{dx}{dt} = f(x) \qquad \text{so } dx = f(x(t))dt$$
$$x = \int f(x(t))dt$$

for random variable dx = dW

$$x = \int dW \qquad \text{define} \qquad X(T) = \int_0^T x(t) dW(t) \qquad \text{make it discrete}$$
$$\lim_{\Delta t \to 0} \sum_{j=0}^{N_{step}} x(j\Delta t) \cdot (W((j+1)\Delta t) - W(j\Delta t)) = \sum_{j=0}^{N_{step}} x(j\Delta t) \left(\sqrt{\Delta t}N(0,1)\right)$$

- so a recipe for the diffusive / Brownian motion
- more interesting to combine it

combining classic with noisy methods

A variable *X* feels a deterministic force f(X) and random g(X)dX(t) = f(X(t))dt + g(X(t))dW(t)

$$X(t) = X_0 + \int_0^t f(X(x)) ds + \int_0^t g(X(s)) dW(s)$$

- think of a protein *in vacuo* with Newtonian dynamics from *f*(*X*) and random effects of solvent from *g*(*X*)
- connect back to last week and this week chemistry

stochastic chemistry – not Gillespie

 $A + B \xrightarrow{k} C$ $dA = -kAB dt \qquad dB = -kAB dt \qquad dC = kAB dt$

• then add noise

 $dA = -kAB dt + \kappa A dW_1(t) dB = -kAB dt + \kappa B dW_2(t) \text{ and}$ $dC = kAB dt + \kappa C dW_3(t)$

• simulating ? easy $A_{i+1} = A_i - kA_iB_i\Delta t + \kappa A_0 \sqrt{\Delta t} N(0,1)$ and similar for *B* and *C*

Schwartz, R, "Biological modelling and simulation, MIT Press, Massachussets (2008)

02/12/2019 [42]

Who uses this ?

- Chemistry reactions with random side reactions
- epidemiology
- ecosystems
- finance first google hit with maple .. finance [wienerprocess]

Ende Des Semesters

Last week

- simulations and processes using just a transition matrix
- from chemistry to mutations (also works for epidemiology, finance)

Gillespie

- very rigorous
- rather slow

Stochastic differential methods

- general noise
- Brownian dynamics, markets, epidemiology, chemical kinetics
- requires a model for noise occasionally rigorous