No Atoms

So far
• atoms → coarse grained → lattices

Today – the holistic lecture
• from reaction kinetics to substitution matrices

What if we forget atoms and residues?
• Kinetics / dynamic systems
 • A → B breakdown of A, \(\frac{d[A]}{dt} = k[A] \)
 • foxes and hares \(\frac{dn_h}{dt} = \alpha n_h - \beta n_h n_f \) and \(\frac{dn_f}{dt} = \gamma n_h n_f - \delta n_f \)
 \(n_h, n_f \) number of hares and foxes
 • complicated kinetics – bacterium eats 10 different nutrients, makes 10 waste products, interconversion of nutrients

Andrew Torda July 2019, Struct and Sim
Plan

- simplest systems
 - one or two reactants
- treatment of more complicated systems
- transition matrices in sequences

Different approach next lecture
- handling very low probabilities
Simplest systems

- one species breakdown / radioactive decay
- A→B or A disappears
- philosophy
- we know the average disappearance of A

- Each molecule has an equal chance of breaking down: \(\frac{dA}{dt} = -kA \)

\[
\frac{dt}{dA} = -\frac{1}{kA}
\]

\[
t = -\frac{1}{k} \ln A - \frac{1}{k} \ln c
\]

\[
\ln A - \ln c = -kt = \ln \left(\frac{A}{c} \right)
\]

\[
\frac{A}{c} = e^{-kt} \quad \text{so} \quad A = ce^{-kt} \quad \text{or} \quad A = A_0e^{-kt} \quad \text{not unexpected}
\]
forward and backward reactions

\[
\begin{align*}
&k_1
\quad 2A \rightleftharpoons B \quad \text{so} \quad 2A \rightarrow B \quad \text{and rate of disappearance is} \quad k_1A^2, \quad \text{rate of appearance is} \quad k_2B \\
&k_2
\end{align*}
\]

\[
\begin{align*}
\frac{dA}{dt} &= -2k_1A^2 + 2k_2B \\
\text{and} \quad \frac{dB}{dt} &= k_1A^2 - k_2B
\end{align*}
\]

Theme

lots of processes are easiest to describe in differential form (rate of change)
These are easy enough to do by hand
Make it more complicated
An enzymatic reaction
\[\begin{align*}
E + S & \rightleftharpoons ES \\
& \rightarrow E + P
\end{align*} \]

\[
\frac{dE}{dt} = -k_1 E \cdot S + k_2 ES + k_3 ES
\]

\[
\frac{dS}{dt} = -k_1 E \cdot S + k_2 ES
\]

\[
\frac{dES}{dt} = k_1 E \cdot S - k_2 ES - k_3 ES
\]

\[
\frac{dP}{dt} = k_3 ES
\]

let us rewrite..
\[
\frac{dE}{dt} = -k_1 E \cdot S + k_2 ES + k_3 ES \\
\frac{dS}{dt} = -k_1 E \cdot S + k_2 ES \\
\frac{dES}{dt} = k_1 E \cdot S - k_2 ES - k_3 ES \\
\frac{dP}{dt} = k_3 ES
\]

We have a matrix form
What is \(k_1 E \cdot S \) ? (and next terms)
you would usually say velocity vector \(\mathbf{v} \)
we can describe everything as \(\mathbf{s} = \mathbf{Nv} \)
General approach to kinetics

- "differential form" of kinetics
- applicable to most reactions

How is it helpful?

- $\frac{dA}{dt}$ is a velocity in one dimension
- velocity of A depends on where A is, B is, ...
- how to predict behaviour of system?

For some initial A_t say $A_{t+\Delta t} = A_t + v\Delta t = A_t + \frac{dA}{dt}\Delta t$

- numerical integration exactly as in Newtonian dynamics
- do the same for A, B, C ...

- Not just in this lecture – maple, matlab, deSolve in R, ..
Even more general

- We have a number of states i, j, \ldots starting materials, products, intermediates
- We have a finite amount of material
 - Use the term probability p_i for convenience and consistency
- $p_i(t + \delta t)$ depends on initial value, flux in and flux out

$$p_i(t + \delta t) = p_i(t) + \delta t \sum_{i \neq j} k_{ji} p_j(t) - \delta t \sum_{i \neq j} k_{ij} p_i(t)$$

k_{ab} is rate constant for $a \rightarrow b$

- Or given a set of reactants and a matrix of k's (rate matrix)
 - We can model the system
- If we say $v_{ij} = p_i k_{ij}$ what is the meaning of equilibrium? Every $v_{ij} = v_{ji}$
 - For an arbitrarily complicated system
 - I can find the set of p ... equilibrium concentrations
the master equation

In chemical modelling, physical processes, work with master equation

Modelling in engineering
• put all components and possible routes into numerical bucket
• find steps which are bottle-necks
• effect of alternative pathways, think of multitude of protein folding pathways

Last property
• the state at \(t + \delta t \) depends on state at \(t \) and rate constants
• no dependence on previous states = Markov process

• what is the connection to sequences and mutations?
Markov processes and mutations

First – more general idea of transition matrices / Markov Chains

My system is described by a vector of probabilities – think amino acids at a site

\[
\mathbf{p} = \begin{bmatrix} p_A \\ p_G \\ p_C \\ \ldots \end{bmatrix}
\]

for ala, gly, cys, ...

\(p_{AB}\) probability of a transition AB but we have lots of them
A Markov transition matrix

\[
\begin{array}{cccc}
D & E & \cdots & W \\
D & p_{DD} & p_{DE} & \cdots & p_{DW} \\
E & p_{ED} & p_{EE} & \cdots & p_{EW} \\
\vdots & \vdots & \vdots & \cdots & \vdots \\
W & p_{WD} & p_{WE} & \cdots & p_{WW}
\end{array}
\]

Only valid for short times
- \(D \rightarrow E \) OK
- \(D \rightarrow S \rightarrow T \rightarrow A \rightarrow D \rightarrow E \) something different

In Markov / probability framework rows sum to 1
Applying a matrix

- imagine three kinds of amino acid, $P = \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$
- population $E, D, W = 0.4, 0.4, 0.2$
- at time $t + \delta t$
 \[
 \begin{bmatrix} 0.7 & 0.2 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.4 \\ 0.2 \end{bmatrix} = \begin{bmatrix} 0.7 \cdot 0.4 + 0.2 \cdot 0.4 + 0.1 \cdot 0.2 \\ 0.3 \cdot 0.4 + 0.6 \cdot 0.4 + 0.1 \cdot 0.2 \\ 0.1 \cdot 0.4 + 0.1 \cdot 0.4 + 0.8 \cdot 0.2 \end{bmatrix}
 \]
- gives us the new state of the system
- is this a substitution matrix?
comparison with a substitution matrix

blosum62:

	A	R	N	D	C	Q	E	G	H	I	L	K	M	F	P	S	T	W	Y	V
A	4	-1	-2	-2	0	-1	-1	0	-2	-1	-1	-1	-2	-1	1	0	-3	-2	0	
R	-1	5	0	-2	-3	1	0	-2	0	-3	-2	2	-1	-3	-2	-1	-1	-3	-2	-3
N	-2	0	6	1	-3	0	0	0	1	-3	-3	0	-2	-3	-2	1	0	-4	-2	-3
D	-2	-2	1	6	-3	0	2	-1	-1	-3	-4	1	-3	-3	-1	0	-1	-4	-3	-3
C	0	-3	-3	-3	9	-3	-4	-3	-3	-1	1	-1	-3	-1	-2	-3	-1	-1	-2	-2
Q	-1	1	0	0	-3	5	2	-2	0	-3	-2	1	0	-3	-1	0	-1	-2	-1	-2
E	-1	0	0	2	-4	2	5	-2	0	-3	-3	1	-2	-3	-1	0	-1	-3	-2	-2
G	0	-2	0	-1	-3	-2	-2	6	-2	-4	-4	-2	-3	-3	-2	0	-2	-2	-3	-3
H	-2	0	1	-1	-3	0	0	-2	8	-3	-3	-1	-2	-1	-2	-1	-2	-2	2	-3
I	-1	-3	-3	-3	-1	-3	-3	-4	-3	4	2	-3	1	0	-3	-2	-1	-3	-1	3
L	-1	-2	-3	-4	-1	-2	-3	-4	-3	2	4	-2	2	0	-3	-2	-1	-2	-1	1
K	-1	2	0	-1	-3	1	1	-2	-1	-3	-2	5	-1	-3	-1	0	-1	-3	-2	-2
M	-1	-1	-2	-3	-1	0	-2	-3	-2	1	2	-1	5	0	-2	-1	-1	-1	-1	1
F	-2	-3	-3	-3	-2	-3	-3	-3	-1	0	0	-3	0	6	-4	-2	-2	1	3	-1
P	-1	-2	-2	-1	-3	-1	-1	-2	-2	-3	-3	-1	-2	-4	7	-1	-1	-4	-3	-2
S	1	-1	1	0	-1	0	0	0	-1	-2	-2	0	-1	-2	-1	4	1	-3	-2	-2
T	0	-1	0	-1	-1	-1	-1	-2	-2	-1	-1	-1	-1	-2	-1	1	5	-2	-2	0
W	-3	-3	-4	-4	-2	-2	-3	-2	-3	-3	-1	1	-4	-3	-2	11	2	-3		
Y	-2	-2	-2	-3	-2	-1	-2	-3	2	-1	-1	-2	-1	3	-3	-2	-2	2	7	-1
V	0	-3	-3	-3	-1	-2	-2	-3	-3	3	1	-2	1	-1	-2	-2	0	-3	-1	4
where do blosum and PAM come from?

Take related sequences – no alignment errors

Count mutations (transitions) for each AB pair

Correct for the amount of A, B \((p_A, p_B, \ldots)\)
transition matrix versus blosum (PAM, JTT, Gonnet, ..)

Philosophically related – slightly different

• a substitution matrix is a log-odds creation - \(\log \frac{n^{obs}_{AB}}{n^{exp}_{AB}} \)
 • scaling does not matter

• a transition matrix is based on formal probabilities
 • if we have a composition vector \(\mathbf{v} \) elements sum to 1
 • after multiplication, still sum to 1

Similarities ...

• application to longer times
longer times

• transition matrix tells me about some change Δt

 $\mathbf{p}_{t+\delta t} = \mathbf{P}\mathbf{p}_t$ for composition vector \mathbf{p} and matrix \mathbf{P}

• then at next time

 $\mathbf{p}_{t+2\delta t} = \mathbf{P}\mathbf{p}_{t+\delta t}$ or $\mathbf{P}\mathbf{P}\mathbf{p}_{t+\delta t}$

• to go to longer times, repeatedly multiply the matrix

• what happens? diagonal elements represent conservation (p_{AA})

 • probability mass moves away from diagonal

• basis of PAM 100, PAM 200 ... substitution matrices

• when doing alignments, one should use the correct substitution matrix
infinite time

• I have a system described by probability of states \(\mathbf{p} \)
• I repeatedly multiply by a realistic \(\mathbf{P} \) ... \(\mathbf{P}^\infty \mathbf{p} \)

• does my distribution disappear? become flat?

• with infinite time everything becomes equally likely

• realistic? No
 • alignments become less reliable with evolutionary time
Summary so far

- chemical kinetics, mutation trajectories, fox + hare populations
 - examples of dynamic systems – very similar methods to treat them
 - allows one to treat complicated kinetics
 - usually simulated by numerical integration

- systems biology problems ? the same ?
 - sometimes yes – sometimes neglect conservation of mass and formal treatment

- a Markov process state at $t + \delta t$ depends on state t
 - do not talk about second order or n^{th} order processes

- everything so far depends on bulk properties
 - what happens if you only have a few molecules ? small numbers ? Last lecture
Systems with low numbers and noise

Usually we work with average properties

• averages require large numbers

When are they definitely wrong?

Does a system asymptotically approach equilibrium?
\frac{1}{6} \text{ chance of going backwards (away from equilibrium)}

Stock market
- yesterday trade at € 10
- buy offer at € 9, sell at € 11
- widow decides to sell husbands shares at € 9
- report of 10% share price drop
- you are asked to judge the significance
 - simulate how often it happens by chance

Queuing simulations
- shops, transport
more low copy dynamic systems

Lotka-Volterra

- foxes and hares \(\frac{dn_h}{dt} = \alpha n_h - \beta n_h n_f \) and \(\frac{dn_f}{dt} = \gamma n_h n_f - \delta n_f \)
- \(n_h, n_f \) number of hares and foxes
- but what if fox/hare meetings are not so common?

Dilute chemistry?

- lac repressor - < 40 copies per cell – well studied, classic DNA regulator
- what are chances of a protein repressor drifting through a cell and finding exactly the right piece of DNA?

Epidemiology

- states – healthy, sick, immune
Simulating rare events

Two aspects

• when do events occur?
• what to do?
Frequencies of rare events

Events are not correlated
- this particle is independent of that one
- calls into help line are independent
- flood in this time not correlated with some other time

Average μ is known – number of events in a time period in time t
- average number of calls in day, Geiger counter counts / s, ..

- later use rate λ so in time t, $\mu = \lambda t$
- average time between events? $\tau = \lambda^{-1}$ (check dimensions here)

Two names will keep coming up
- poisson distribution - think of μ
- exponential distribution - think of τ
Poisson

Used for next step

What is the probability of \(n \) events in time \(t \)?

\[
P(x = n) = e^{-\mu} \cdot \frac{\mu^n}{n!}
\]

\(\mu = 2 \) but probability of seeing 2 events is only \(\approx \frac{1}{4} \)

how to derive? Do derivation of binomial and take limit
time between events

We have $P(x = n) = e^{-\mu} \frac{\mu^n}{n!} = e^{-\lambda t} \frac{\mu^n}{n!}$

• something does not happen for τ, then happens

• zero events over some t? $P(x = 0) = e^{-\lambda t} \frac{\mu^0}{0!} = e^{-\lambda t}$

This means the first event happened at τ and $\tau > t$ so

• $P(\tau > t) = P(x = 0) = e^{-\lambda t}$ but then probability of an event is

• $P(\tau \leq t) = 1 - P(x = 0) = 1 - e^{-\lambda t}$

• Cumulative probability over all τ is $1 - e^{-\lambda t}$

• instantaneous probability for some t will be the derivative
time between events

Cumulative probability over all τ is $1 - e^{-\lambda t}$

Instantaneous probability for some t will be the derivative

$$\frac{d}{dt} P(T \leq t) = \frac{d}{dt} (1 - e^{-\lambda t}) = \lambda e^{-\lambda t}$$

- distribution of gaps between events τ is $\lambda e^{-\lambda t}$ or exponential distribution

Formally, τ is a random variable drawn from $f(\tau, t) = \lambda e^{-\lambda t}$

- back to simulation question
simulating with rare events

- λ is 10 events a second or 20 calls an hour or..
- define our time step as τ

 because τ is the time between events

Simulate

while ($t < t_{max}$)
 pick τ from $P(\tau = t) = \lambda e^{-\lambda t}$
 $t := t + \tau$
 do something

Bit more complicated
more than one event type

\[
\begin{align*}
 k_1 & \quad k_3 \\
 E+S & \rightleftharpoons ES \rightarrow E + P \\
 k_2 &
\end{align*}
\]

- three reactions – each is a poisson process
- total poisson process
 - I have A's and B's happening independently
 - I see \(\mu_A \) events and \(\mu_B \) events
 - total \(\mu_0 \) is just \(\mu_A + \mu_B \) so I can just add up \(\lambda \)'s

\[P(x = n) = e^{-\mu} \frac{\mu^n}{n!} \] \(\mu \) is the average number of times something happens

- add up the rates, say \(\lambda_0 = \sum_{i=1}^{N\text{rates}} \lambda_i \)

\[P(x = n) = e^{\lambda_0 t} \frac{\mu^n}{n!} \] or maybe you prefer \(P(x = n) = e^{-\mu_0} \frac{\mu^n}{n!} \)

- we can draw timestep from this distribution, but what happens there?
\[\mu_0 = \lambda_0 t \quad \text{total events per time} \]

- simulate

while \((t < t_{max})\)
 pick \(\Delta t\) from \(P(\tau = t) = \lambda_0 e^{-\lambda_0 t}\)
 \(t := t + \tau\)
 pick a reaction

- choosing a reaction...
choosing a reaction

\(N_\lambda \) rates each \(\lambda_i \) (three in previous example)

- probability of reaction \(i \)

\[
p_i = \frac{\lambda_i}{\sum_{j=1}^{N_\lambda} \lambda_j}
\]

implementation to choose which reaction happens

- make a table of \(q_i = \sum_{j=1}^{i} p_j \)

\[
r = \text{rand}(0..1)
\]

\[
\text{for } (i = 0; i < n; i++) {
 \text{if } r < q_i \{ \text{return } i \}
}
\]

\[
\begin{array}{cc}
\hline
p_i & q_i \\
0.2 & 0.2 \\
0.3 & 0.5 \\
0.5 & 1.0 \\
\hline
\end{array}
\]
The Gillespie algorithm

• $\mu_0 = \lambda_0 t$ total events per time
• calculate rate λ_0

• simulate
while ($t < t_{\text{max}}$)
 pick τ from $P(\tau = t) = \lambda_0 e^{-\lambda_0 t}$
 $t: = t + \tau$
 pick a reaction from recipe on previous slide
 update rates (λ's) since quantities have changed

What did Mr Gillespie find?
\[\overline{X} + Y \overset{c_1}{\rightarrow} 2Y \] and \(\overline{X} \) means a large pool of X

\[2Y \overset{c_2}{\rightarrow} Z \]

Two starting conditions

- \(n_Y = 10 \) or 1000
 - some values for \(c_1, c_2 \) and \(n_X \)

Have you learnt much?

Why do Gillespie simulations?

You already know average behaviour from classic kinetics

- You can predict $[Y]_t$ but it is an average

Run simulation 1000 times

- gives you $[Y]_t \pm \sigma_Y$
- can predict fluctuation around equilibrium values
Gillespie-style Methods

Back to cell with one DNA + 40 copies of repressor
• from some estimates of kinetics, can predict
 • average occupancy
 • lifetime of bound state
 • fraction of time DNA site is occupied, confidence intervals

Stock exchange example
• you hear of a 10 % drop in share price – has something really happened?

These methods give you
• errors / fluctuations / significance / confidence intervals
Extensions / Applications of Gillespie method

Fuchsen + blue hares and red hares
- move randomly, meet randomly fox + hare \rightarrow fox
 - widely used in eco-system modelling

Spatial diffusion problem in cells
- for a particle in box$_1$, box$_1 \mathbin{\xrightarrow{k}}$ box$_2$
 - diffusive simulations + chemistry – states are mixture of chemistry and location

Finance
- few sellers and buyers
Alternative philosophy

Follow a trajectory in some field

A particle moves is hit by other particles
 • you do not want to model the particles explicitly
 • a chemical trajectory with side reactions

but path is noisy
Adding noise to systems

Examples here

- Gaussian (normal) noise
 - mean $\mu = 0$
 - call my noise $W(t)$ means $\mu = 0$ and variance $(\sigma^2) = t$
 - not obvious – Brownian processes – you move randomly

Want to build noise into normal simulations

- Normally (Newtonian dynamics, chemical kinetics) – simple integrator
 \[
 \frac{dx}{dt} = f(x) \quad \text{where } f \text{ comes from a force or chemistry rate of change}
 \]
 and we have just said $x_{n+1} = x_n + \Delta t \ f(x)$

 use $W(x)$ – Wiener process
\[x_{n+1} = x_n + \Delta t \, f(x) \] can also write
\[x_{n+1} = x_n + dx \]

if I have a random process \(W \)
\[x_{n+1} = x_n + dW \]

Meaning of \(dW \)?
• \(W(t) \) is the fluctuation over \(t \) – random variable from Gaussian \((0,t)\)
• \(dW \) also a random variable - \(\sqrt{\Delta t} \cdot \text{gaussian}(0, t) \) more concisely \(\sqrt{t}N(0, t) \)
 usually use \(N() \) to represent Gaussian random number
integrate over random variable

\[\frac{dx}{dt} = f(x) \quad \text{so} \quad dx = f(x(t))dt \]

\[x = \int f(x(t))dt \]

to

for random variable

\[dx = dW \]

\[x = \int dW \]

define \(X(T) = \int_0^T x(t)dW(t) \) make it discrete

\[\lim_{\Delta t \to 0} \sum_{j=0}^{N_{step}} x(j\Delta t) \cdot (W((j+1)\Delta t) - W(j\Delta t)) = \sum_{j=0}^{N_{step}} x(j\Delta t) \left(\sqrt{\Delta t} N(0,1) \right) \]

- so a recipe for the diffusive / Brownian motion
- more interesting to combine it
A variable X feels a deterministic force $f(X)$ and random $g(X)$

$$\frac{dX(t)}{dt} = f(X(t))dt + g(X(t))dW(t)$$

$$X(t) = X_0 + \int_0^t f(X(x))ds + \int_0^t g(X(s))dW(s)$$

- think of a protein *in vacuo* with Newtonian dynamics from $f(X)$ and random effects of solvent from $g(X)$

- connect back to last week and this week chemistry
stochastic chemistry – not Gillespie

\[A + B \stackrel{\kappa}{\rightarrow} C \]
\[dA = -kAB \ dt \quad dB = -kAB \ dt \quad dC = kAB \ dt \]

• then add noise
\[dA = -kAB \ dt + \kappa A \ dW_1(t) \quad dB = -kAB \ dt + \kappa B \ dW_2(t) \quad \text{and} \]
\[dC = kAB \ dt + \kappa C \ dW_3(t) \]

• simulating ? easy
\[A_{i+1} = A_i - kA_i B_i \Delta t + \kappa A_0 \sqrt{\Delta t} \ N(0,1) \]
and similar for \(B \) and \(C \)
\[A + B \rightarrow C \]

\[k = 1 \quad \kappa = 0.01 \]

\[A(0) = 1, \quad B(0) = 1, \quad C(0) = 0 \]

Who uses this?

- Chemistry – reactions with random side reactions
- Epidemiology
- Ecosystems
- Finance – first Google hit with maple .. finance [wienerprocess]
Ende Des Semesters

Last week
• simulations and processes using just a transition matrix
• from chemistry to mutations (also works for epidemiology, finance)

Gillespie
• very rigorous
• rather slow

Stochastic differential methods
• general noise
• Brownian dynamics, markets, epidemiology, chemical kinetics
• requires a model for noise - occasionally rigorous