
Sommersemester 2019, Struktur und Simulation

Übung: Statistical Mechanics and Simple Monte Carlo

Integration

Assignment due date: 6.5.2019

Statistical mechanics of a simple system

Imagine we have a simple molecule with just three conformations, indexed by the numbers
1, 2, and 3. The energies for each conformation are E1 = 0 kJ/mol, E2 = −1 kJ/mol, and
E3 = −2 kJ/mol.

The partition function and probabilities of each state are given by

Z =
∑
i

e−
Ei
RT

and

pi =
e−

Ei
RT

Z

We use the gas constant R = 8.3144621 J K−1 mol−1 instead of the Boltzmann constant as the
energies are given in J/mol.

We will now consider a non-interacting dimer system (gas-like) with

Eij = Ei + Ej

and an interacting dimer system with

Eij = Ei + Ej − δij 5 kJ/mol

where i, j are the conformations of our molecule. In words, this means that the states
(1, 1), (2, 2), (3, 3) get an energy bonus. The bonus is negative because for energies “lower
is better”.

Here δij is the so-called Kronecker delta function defined as

δij =

{
1 if i = j

0 otherwise

The entropy of our molecule is

S = −k
∑
i

pi log pi

1



and for the dimer systems it is

S = −k
∑
i,j

pij log pij

Note: this is the same formula, only the definition of the states (i vs ij) differ.

Simple Monte Carlo integration

In this exercise we will implement a simple Monte Carlo algorithm for numerical integration.

Pseudorandom numbers and seed values

Monte Carlo algorithms take their name from the random numbers they use. On a computer,
we use so-called pseudorandom number generators, which are deterministic algorithms that
produce numbers that look sufficiently random. All of these algorithms take some kind of
“seed” value, which can be used to recreate the sequence of random numbers exactly. In
practise this means that all your programs using random numbers should accept a seed value
from the command line so that your calculations become reproducible.

In python you can use the module random and call seed to set the seed and uniform(0.0,

1.0) to generate a random number in the interval [0.0, 1.0). You can also use the numpy
functions numpy.random.seed and numpy.random.rand.

Calculating π by Monte Carlo integration

This example has already been mentioned in the lectures. Imagine a square with side length
1 centred at (0.5, 0.5), and inside it a circle with radius 0.5 also centred (0.5, 0.5). The square
has the area As = 1, and the circle the area Ac = π

4
. If we select n points at random from the

square and count the number of points k that lie inside the circle, the ratio k
n

will converge
to Ac

As
= π

4
as n goes to infinity. After n steps, our best estimate for π is 4 k

n
. We can estimate

the standard error s (of our estimate for π after n steps) as

s = 4

√
pq

n

where p = k
n

and q = 1 − p.

What is being integrated here? If we define a function

f(x, y) =

{
1, if

√
(x− 0.5)2 + (y − 0.5)2 < 0.5

0, otherwise

then we are calculating its integral. In this case, we know the correct answer, so it is easy to
see how good our Monte Carlo estimate is after a given number of steps.

2



Assignment

Answer the following questions and send them to petersen@zbh.uni-hamburg.de.

1. Show that if we have equal probabilities for N states

pi =
1

N

then the Gibbs formula for entropy

S = −k
∑
i

pi log pi

reduces to the Boltzmann formula for entropy

S = k logN

This means that the Boltzmann formula for entropy is a special case of the Gibbs formula
for entropy for equal probabilities.

2. For our molecule with three states, calculate the probabilities of each state at T = 3 K,
T = 300 K, and T = 300000 K.

Calculate the entropy of the molecule alone, for the non-interacting (gas-like) and the
interacting dimer system at T = 300 K. In which case is the entropy of the dimer system
equal to two times the entropy of the single molecule?

Use k = 1 for Boltzmann’s constant in the entropy formulas for simplicity. You can do
the calculations by hand or write a small program.

It can be helpful to organise the calculations in a table. For the single molecule it would
look like this:

state E [kJ/mol] e−
E
RT p p log p

1 0
2 -1
3 -2

Z =
∑

. . . S = −k
∑

. . .

And for the dimer systems it would look like this:

state E [kJ/mol] e−
E
RT p p log p

(1,1)
(1,2)
(1,3)
(2,1)
(2,2)

...
Z =

∑
. . . S = −k

∑
. . .

3



3. Write a program that calculates an estimate for π as described above as well as an
estimate of the standard error s. Make sure you set the seed at the beginning of your
program once before generating any random numbers. Print out the current estimates
for π and the standard error s to the screen and plot. You choose any program for
plotting (e.g. matplotlib). You can also use gnuplot. There is some help on how to use
gnuplot in the appendix.

Run your program for up to 100, 1000, 10000 steps (and more if you want to). How fast
does the estimate for π converge to the true value? Also consider the change in the size
of the error bars with time. Attach relevant plots that support your arguments. What
does the formula for the standard error tell you about the speed of convergence, e.g. how
does the number of steps n have to change if we want to reduce the standard error by a
factor of 10?

Your program should take three command-line arguments

./pi seed nsteps nstep print

where seed is the seed value for the random number generator, nsteps the total number
of steps that should be performed, and nstep print is the number of steps between
printing out results.

An example run:

$ ./pi 23 4 1

1 0.000000 -3.141593 0.000000

2 2.000000 -1.141593 1.414214

3 2.666667 -0.474926 1.088662

4 3.000000 -0.141593 0.866025

The first column is the step number, the second the current estimate for π, the third
column is the difference between our estimate and the true value of π, and the fourth
column contains the estimate for the standard error s.

Bonus assignment (optional)

1. Show that
−kT logZ = G

where k is the Boltzmann constant, T the temperature, G = U − TS the free energy,
and Z is the partition function.

Hint: substitute U =
∑

i piEi and S = −k
∑

i pi log pi into the formula for the free

energy. Expand log pi in the formula for entropy by using pi = e−Ei/kT

Z
and the rule for

logarithms of fractions.

4



Appendix A: Help on plotting with gnuplot

If you print your results in the order

n, pi_estimated, (pi - pi_estimated), s_estimated

and store the output in a file

./pi seed 100 1 | tee out.dat

Then you can start gnuplot and type

plot ’out.dat’ using 1:2:4 with errorbars, 3.141592653 lw 2

If you only want every 10th datapoint (this is useful when you have many rows in the file you
want to plot), use

plot ’out.dat’ every 10 using 1:2:4 with errorbars, 3.141592653 lw 2

The numbers 1, 2, and 4 refer to the columns of the file out.dat. Column 1 (the step number)
gets used for the x-axis, column 2 for the y-axis, and column 4 is used for the error bars. Save
your plot to a file by typing

set terminal png

set output ’out.png’

replot

If you want the old behaviour of showing the plot on the screen back, type

set terminal x11

Appendix B: Logarithms of products and fractions

The logarithm of a product ab or a fraction a
b

is

log ab = log a+ log b

and
log

a

b
= log a− log b

There is also a rule for exponentiation

log ab = b log a

5


