Protein Design

Andrew Torda, wintersemester 2007 / 2008, AST ... 00.904

What 1s 1t ?

Why ?

Experimental methods
What we need
Computational Methods
Extensions
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What is protein design ?

e Assumption
* you can write a protein sequence on a piece of paper
« a molecular biologist can produce it
* clone, express, fold, purify, ...
* Most general
* you have a protein which is useful (enzyme, binding, ...)
« you want to make it more stable
e temperature

* solvents (tolerate organic solvents)
° pH
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Experimental approach

1. simple selection
2. phage display

3. In vitro evolution
4. manual

Selection

Want protein that 1s active and more stable

need assay for activity

clone gene into bacteria, (semi-)randomly mutate
select for bacteria (need assay)
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phage display

« aim — evolve / select for proteins with better binding
* put gene into phage

s1gnal coat

\) signal coat

e copy many times and mutate gene for your protein

phage library
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phage display

* grow up phage with the library
 selection

* needs some strong binding like streptavidin+biotin

stritavidin
solid
support g

protein

< <3iotin

ligand

<
<

 1f we have a protein that binds the ligand

 can be selected + 1ts corresponding genes

phage

coat
protein
genes/for
protei
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phage display
* 1mprove binding with each cycle

put gene in phage

—— copy and mutate

l

grow phage

select by binding

l

———  get genes w3 (better) protein
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Other experimental methods

* In Vitro evolution / ribosome display
 similar philosophy to phage display
* manual
 guess and use site directed mutagenesis
e compare with phage display
« few mutants instead of 10*

e computational methods ...
e first specify the problem
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Formalising the problem

 We have a working structure
e want to make it more stable (limit to this)

N 2
-, OO
RﬂQO( ‘ Aﬂ A o(
= O] A
& A
"improved"

native protein protein

e Rules

* structure should not change
 should be able to fix some residues (active site, important)..
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Fixing / specifying residues

Examples
* lysine (K) often used for binding
 change a residue to K and protein does not fold
* mission:
* adapt the rest of the residues to be stable
 change all residues, but not those 1n active site
* change some residues at surface to be soluble

. . do not break
* change some residues at surface to stop dimers \
e .=dl(=,}
glgsl® [

S
N

active site

(0000,
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Ingredients

Score function (like energy)
Search method

Score function

how does sequence fit to structure ?
sequence S=1{S,, S,, ..Sy}
coordinates R={r, r,, ... Iy}
score = f(S, R) (diffferent nomenclature soon)
mission
 adjust S to as to maximise score (minimise quasi-energy)
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Score function

N res

score = »_score,.. (s, R)
i=1

how do amino acids

* suit structure ? N N
* suit each other ? + )Y scorey, (5.5, R)
i=1 j>i
score,,. . might have

 backbone preferences (no proline 1n helices, ..)

 solvation (penalise hydrophobic at surface
SCOTe iy

* are residues too big (clashing)

« are there holes ? charges near each other ? |

messy functions
* lots of parameters
discussed more later
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Searching

* long topic
« systematic search — how long ?
« search space for N =20 x20 x... =2(QNres

 must it be so bad ?

What if there are no correlations ? 000 09°
for (i = 0; i < N___; i++)
find best residue at position 1
* search space would be 20 N
e 1s this realistic ?
* not very — every time I change a residue, it affects all
neighbours

* changing the neighbours affects their neighbours ...
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Searching

e 1n adream world — could grow linearly with sequence
 in the real world = 20Nres

« brute force / systematic search not possible
e two methods here

1. Monte Carlo / simulated annealing

2. Pruning / dead end elimination
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Monte Carlo

more formally next semester
first the problem

The sequence optimisation problem

discrete
local minima / correlations in surface
high dimensional
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dimensions and correlations

e a 1D problem COSt(xX)

* a 2D problem, but easy
* only one minimum y

e difficult — correlations

* the best value for X
depends on y @ X
y
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discrete

 for a continuous function use gradients  cost(x)
* to optimise
 to recognise minima / maxima

 continuous functions
e step 1n one direction is good

* try another 1n same direction

» with a discrete function 10
* no gradients o
* order of labels arbitrary ?Z
« ACDE or ECAD 0
* discrete T e 7T

* step 1n one direction may be no predictor of best direction

23/01/2008 [ 17



what do we want ?

from step to step (sequence to sequence)
* be prepared to move in any direction
e 1f the system improves, try not to throw away good
properties
* must be willing to go uphill sometimes

50

philosophy 40|

e take a random move 30 1

cost
20

 1f it improves system )

 keep it 0

A C D E F G .. W Y

e 1f cost becomes worse residue type

* sometimes keep it
* sometime reject
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Acceptance /rejection

 for convenience, write COSt(S,) - neglect the coordinates R
Sign convention

* system (sequence) at step nis S,

« after a random step, cost changes from cost(S,) to cost(S, )
* AC= cOost(S,,)- COst(S,)

 our sign convention: if Ac <0, system 1is better

When to accept ?

e 1f Ac1s abit <0, maybe OK
* 1f ACc << 0, do not accept
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Formal acceptance rule

Ac <0, eACisbetween 0..1

AC =0 then eA¢ = | as AC —-oo0 then e2¢ —()

formalise this rule
set up S=S, and COST(S,)

while (not finished)
Siria1 = random step from S
Ac = cost(S)- cost(S,,;.;)

if (Ac < 0)
S= Strial
else
r = rand (0..1)
if (e?c > r)
S= S

trial

vorsicht ! not the final method

/* accept */
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why we need temperature

* As described
 system will run around
* try lots of new configurations
« sometimes accept bad moves
 always take good moves
« may never find best solution
* Imagine you are at a favourable state
* most changes are uphill (unfavourable)
* many of the smaller ones will be accepted

* 1f we were to find the best sequence, the system would
move away from 1t

e how to fix ?
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why we need temperature

Initial sequence 1s not so good

* let the system change a lot and explore new possibilities
after some searching, make the system less likely to go uphill
introduce the concept of temperature T

initially high T means you can go uphill (like a high energy
state)

as you cool the system down, it tends to find lowest energy

state
AC

change acceptance criterion to o7

* as Ac
T oo, e 1

AC * put this into previous description
T—->0 e’ -0
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why we need temperature

set up S=S, and CcOSt(S,)set T=T,
while (not finished)

Siria1 = random step from S
T = gT /* ¢ bit smaller than 1 */
Ac = cost(S)- cost(S.,;.;)
if (Ac < 0)
S= Siria1
else

r = rand (0..1)
if ( exp(Ac/T)= r)
S= S

trial

name of this procedure
 "simulated annealing"
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Final Monte Carlo / annealing

History applications

« discrete problems — travelling salesman, circuit layout
deterministic ? No
convergence ? Unknown
practical 1ssues

» what is a random step ?

 change one amino acid ? change interacting pairs ?

easy to program
lots of trial and error
statistical properties next semester

can we reduce the search space ?
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Pruning

Are there elements of sequence which are impossible ?
e at position 35, no chance of Y, W, I, L, ...
can one find impossible combinations

 reduce the search space so it can be searched systematically
(brute force)

... dead end elimination method
use an energy-like nomenclature
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Nomenclature

we are not dealing with

 free energy G or F or potential energy U or E
but let us pretend

* scoreis E
rule : more negative E , better the system
structure 1s fixed so neglect R / r terms
define a function s;(a) as the residue type at site |

 can take on 20 values of "a" why ?
foreach (a in A, C, D, E.., W, Y)
evaluate energy corresponding to a

our energies ?
 two parts — pairwise and residue with backbone
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Nomenclature

* E 1s (quasi-energy) of whole system
* label E, as the terms that depend on residue + fixed

environment
* E, as the energy terms that depend on pairs

E—

N res N Ies N res

El(si)_l_zzEz(Si?Sj)

i=1 i=l j>i

 if we are interested in site | and being in state a
what do we have to look at ?

Ies N Ies N Ies

> E(s(@)+ 22 E(si(a)s; (b))

23/01/2008 [ 27



Nomenclature and rules

there are 20 (N,,.) residues

which fits best to the fixed environment ? main E,(si(2))
yype 10T @

what is the best energy type a at site I could have, interacting

with one site | ? .
E,(s,(a))+ min E,(s;(a),s j (b))

what is the best energy that type a at 1 could have considering

all neighbours ?
E, (Si (a)) + Z mbin E, (Si (a)» S; (b ))

J#i

implies testing each of the N

for each a — can work out what 1s the best score it could yield
* loop over b
o within loop over |
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Dead-end elimination method

» worst energy that type C at | could have considering all

neighbours ? E,(s.(c))+ Zmax E ( (c)s;(d ))

j;tl

* when can one eliminate (rule out) residue type a at site 1 ?

 for any residues @, C
* 1f the best energy for a 1s worse than the worst for ¢
 a cannot be part of the optimal solution ... if

E1 +meE( ( ) (b))>E +ZmaXE( () J(d))

j#i j#i

Desmet, J, de Maeyer, M., Hazes, B, Lasters, I, (1992), Nature, 356, 539-542, "... dead-end elimination"
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Dead-end elimination method

E,(s,())+ 2 minE, (s, (a),s;(b))> E, (5(c)) + Y maxE, (s, (c),s5;(d))

j#i J#

* using this approach
for (1 = 0; 1 < N_ ; I++)
foreach a in N
calculate worst score for a
calculate best score for a
foreach a in N,
foreach b in N
i1f best(a) > worst (b)

remove a from candidates

e how strong 1s this condition ?
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DEE condition

much of the time
 cannot really rule out type a
example ?
e initial 2x10?7 final
* searchable 1n 90 cpu hr
deterministic Dahiyat, B.L, Mayo, S.L. (1997), Science 278, 82-87

Combining ideas

use DEE to get a list of candidate residues at each position
search remaining space with Monte Carlo / simulated annealing
not deterministic
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Success
e Method

e Dead end elimination + systematic search

designed QQYTAKIKGRTFRNEKELRDFIEKFKGR

native KPFQCRICMRNFSRSDHLTTHIRTHTGE

New sequence
« about 20 % similar to start
 not related to any known protein (still)

 Structure solved by NMR

* Problem solved ?
* maybe not

Dahiyat, B.I, Mayo, S.L. (1997), Science 278, 82-87 23/01/2008 [ 32



Success

Mission
 sketch a new protein topology
* build a sequence to fit 1t

Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Science 2003, 302, 1364-1368. 23/01/2008 [ 33



Success

Methods

* pure Monte Carlo

Result

e apparently new sequence

Structure
« as predicted
* solved by X-ray

 neat phasing trick !

e Problem solved
 unclear (how many failures ?)

Kuhlman, B.; Dantas, G.; Ireton, G.C.; Varani, G.; Stoddard, B.L.; Baker, D. Science 2003, 302, 1364-1368. 23/01/2008 [ 34



Methods

Methods so far

Monte Carlo Dead-end
elimination
guaranteed no does not try

global optimum

deterministic no

yes
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Determinism

May not matter
 consider real proteins — compare human, goat, ...
« all stable — all slightly different
« 1mplication
 there may be many solutions which are equally good

Counter argument
unsuitability /

. :
sequences 1n nature are instability /...

* not optimal
 not optimal for our purpose

 How good are our energy functions ? sequences
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Determinism and energy

unsuitability /
instability /...
* Thave a perfect score / energy function | @/
® O
o P o
Ssequences
unsuitability /
instability /...
« I have errors / approximations } }
* best answer could be any one }}

sequences
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Problems — stability / energy

energy functions
what do we mean by energy ?

example — two charges U(r)= q[l)qZ
r

example — two argon atoms U (r) = 45(012r‘12 — G6F_6)

make energy better ?
. replace cvery amino acid by d larger one o r

(more contacts — more negative energy) —
* silly — proteins are not full of large amino acids

what determines stability ?
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Problems — stability / energy

stability — does a molecule prefer to be folded or unfolded ?

what is unfolded ? Jor v ?

P
«

a
=

(O

i

J

&

my energy function tells me to change "X" to "Y"
« it affects both the good g§ and bad ¢
* has 1t affected the energy difference ?
° nO guarantee
my score function is like energy (potential or free)
e certainly not identical

(0000
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Problems - sidechains

* long topic next semester — gross problems here
 side chain positions
 can | ever calculate the energy if I change X to Y ?

* 1nsert a phe into this structure
 what interactions does it have ?

* how to cope with side chain positions in a practical way
 optimise location of sidechains
* use average
 explicit rotamers
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Sidechains — optimise at each step

I start with known protein Q\
* change A —F

use an energy minimiser / optimiser to
find best position for F

sensible ?

* we have a gigantic search space

* explicit optimisation of one side chain would be expensive
silly?
I change A—F, but the rest of the side chains may move

bad 1dea Q
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Sidechains — use averaging

ignore the problem of sidechain geometry
silly ?
 at room temperature, side chains move
 small (middle of protein) to big (surface)
* we cannot expect A accuracy anyway

implementation
 functions which care about X interacting with Y
* no attention to location of each atom

rather fast searching

what if we want to worry about atoms ?
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Sidechains — use rotamers

 sidechains can move anywhere but %
* there are preferences A
in diagram — three more likely states ]\ /
B

* how many times is the °
first angle (,) seen at
each angle ? c

 how to use this ?

e look for most

popular angles
(60, 180, 300)

histogram from Dunbrack's group http://dunbrack.fccc.edu/bbdep/figures/cys0 x1.gif 23/01/2008 [ 43"
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Sidechains — use rotamers

* For this example
* do not have 1 cys residue
 replace with cysl, cys2, cys3

e treat all amino acids similarly

1

« more complicated because of more angles
* consequence

* Ntype
 requires that you have a pre-built rotamer library

of amino acids >> 20

e fits to
* Monte Carlo (random moves between residues or rotamers)
* dead end elimination (will remove impossible rotamers)

histogram from Dunbrack's group http://dunbrack.fccc.edu/bbdep/figures/cys0_x1.gif 23/01/2008 [ 44



Problems — viability

* Designed sequences must
« fold
* be expressed + produced
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Summary so far

Experimental approaches
Nature of the problem - discrete (not continuous)
Optimisation methods (MC, DEE)

e more — genetic algorithms
Score functions

* not energy, not free energy, not potential energy
Success / state of the art

* not many examples from literature

o failure rate ?

* cost
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More aims

» Useful and possible ?
* changing solvents ?
e reactions in CH,0H, ethanol, ..
* may be possible experimentally
* pH tolerant
» washing detergent 1s basic
o Useful, but difficult
 change activity / specificity
* ribonuclease should cut after a different nucleotide
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