

Crystal Structure Determination of Biological Macromolecules – An Overview

Manfred S. Weiss

EMBL Hamburg Outstation c/o DESY Notkestr. 85 D-22603 Hamburg msweiss @embl-hamburg.de

What Do We Mean By Structure?

A Coordinate File

END

	HEADER	HEI	HEME PROTEIN							25-FEB-98	
-	TITLE	CAI	CARBONMONOXY-MYOGLOBIN, ATOMIC RESOLUTION								
	EXPDTA	X-RAY DIFFRACTION									
1000	•••										
	ATOM	1	Ν	VAL	А	1	-4.040	15.048	13.602	1.00	37.04
	ATOM	2	CA	VAL	А	1	-3.621	15.574	14.908	1.00	25.44
	ATOM	3	С	VAL	А	1	-2.766	14.564	15.637	1.00	24.20
	ATOM	4	0	VAL	А	1	-3.155	13.399	15.760	1.00	27.65
-	ATOM	5	СВ	VAL	А	1	-4.863	15.869	15.757	1.00	32.48
	ATOM	6	CG1	VAL	А	1	-4.402	15.954	17.205	1.00	38.33
1	ATOM	7	CG2	VAL	А	1	-5.600	17.125	15.353	1.00	45.60
	ATOM	8	Ν	LEU	А	2	-1.588	14.922	16.125	1.00	17.99
	ATOM	9	CA	LEU	А	2	-0.767	13.985	16.878	1.00	16.85
	ATOM	10	С	LEU	А	2	-1.326	13.777	18.289	1.00	16.94
100	ATOM	11	0	LEU	А	2	-1.795	14.765	18.873	1.00	19.44
	ATOM	12	СВ	LEU	А	2	0.694	14.436	17.007	1.00	15.72
	ATOM	13	CG	LEU	А	2	1.598	14.164	15.773	1.00	14.99
- End	ATOM	14	CD1	LEU	А	2	1.269	15.130	14.656	1.00	15.12
	ATOM	15	CD2	LEU	А	2	3.080	14.254	16.161	1.00	14.37
Q	ATOM	16	Ν	SER	А	3	-1.218	12.546	18.763	1.00	16.86
K	••••										

С 0 С С С Ν С С 0 С С С С

Ν

Ν С

The Protein Data Bank (PDB)

- <u>PDB</u>: publicly available archive of macromolecular structure data
- Link: http://www.rcsb.org/pdb
- Reference: H. M. Berman, J. Westbrook, Z. Feng, G. Gilliland, T. N. Bhat, H. Weissig, I. N. Shindyalov & P. E. Bourne (2000). The Protein Data Bank. *Nucl. Ac. Res.* 28, 235-242.

The PDB History

 Since October 1998 managed by the Research Collaboratory for Structural Bioinformatics (RCSB).

- Total contents of the PDB : 47,509 structures (as of Nov 27, 2007)
- 2006: 6,537 new structures (18 per day)

PDB Growth Statistics

Protein Data Bank

Universität Hamburg, 05.12. and 12.12.2007

Why Do We Want To Determine Structures?

The underlying principle of function is structure.

One Example: Myoglobin

Myoglobin (oxygen carrier protein in muscles) can bind both O_2 and CO at the iron (Fe²⁺) of its heme group.

Myoglobin/CO, PDB entry 1A6G

However, CO likes to bind in a linear fashion, whereas O_2 prefers to bind at an angle.

Structure Determination Methods

- 1. X-ray Diffraction
- 2. Nuclear Magnetic Resonance (NMR)
- 3. Electron Diffraction
- 4. Electron Microscopy
- 5. Neutron Diffraction
- 6. Molecular Modeling

X-ray Diffraction is ...

 ... the most important of the techniques listed (85% of all protein structures in the PDB and 95% of all structures consisting of more than 80 amino acids have been determined by X-ray Diffraction).

X-ray Diffraction is ...

- ... the most important of the techniques listed (85% of all protein structures in the PDB and 95% of all structures consisting of more than 80 amino acids have been determined by X-ray Diffraction).
- . . . synonymous for **Crystal Structure Analysis**.

X-ray Diffraction

- 6.

- Physical Principle: scattering of X-rays by electrons
- <u>Prerequisite</u>: three-dimensional crystals
- <u>Resolution</u>: atomic or sub-atomic possible
- Molecular Weights: no limit
- <u>Application</u>: small molecules, proteins, viruses, ribosomes

A Flowchart of A Crystal Structure Determination

Before We Start ...

Picking the Right System

Production of the Sample

- Heterologous (Over)expression
- Purification Using Chromatographic Techniques
- Concentration of the Sample
- Biophysical Characterization
- Quality Control

Crystallization of a Protein

What Is A Crystal?

Proteins Can Be Crystallized

Protein Crystals Are Different

- very soft (needle test !)
- mechanically fragile
- large solvent channels (30-80%)

How Can Proteins Be Crystallized?

1. Nucleation

2. Growth

- Start off with the protein in solution ...
- Decrease solubility by some transport process (dialysis, diffusion, ...)

Cprecipitant

Factors Influencing Protein Solubility

- Ionic Strength
- ∎ pH
- Temperature
- Organic Solvents
- Additives

Crystallization Methods

- 4
- Vapor Diffusion
 (bonging citting conducio)
 - (hanging, sitting, sandwich-drop)
- Batch
- Dialysis
- Free Interface Diffusion
- Diffusion Across a Gel

The "Classical" Way

The "Modern" HTP Way

The "Modern" HTP Way

Difficulties

Macromolecular surfaces are irregularly shaped, carry multiple charges and are flexible.

Acetylcholine Esterase © B. Honig, Columbia University

1BWY, Lassen et al. (1995) Eur. J. Biochem. 230, 266-280.

What Is A Crystal?

The Diffraction Experiment

The Diffraction Experiment

Synchrotron Radiation

Synchrotron Radiation

occurs when a charge moves at *relativistic speed* following a *curved* trajectory.

Synchrotron Radiation

Synchrotron Radiation

- 1. Continuous spectrum
- 2. Wavelength tunability
- 3. Highly collimated
- 4. Polarized
- 5. Time structure
- 6. High brilliance

EMBL-HH and PETRA-III

The Diffraction Experiment

What Does it Really Look Like?

1 mm

What Does it Really Look Like?

A Typical Diffraction Pattern

Diffraction vs. Microscopy

Diffraction by a Molecule in a Crystal

Description of Waves - 1

Every wave can be described by three parameters : amplitude F, wavelength λ and phase α

$$y(x) = F \cos (2\pi x/\lambda - \alpha)$$

Description of Waves - 2

Since we are only dealing with waves of the same wavelength λ , we only need two parameters to describe them. Complex numbers (or vectors) provide a very convenient solution to that.

Summation of Waves

If two (or more) waves with the same wavelength but different amplitudes and phases are added up, the resulting wave has again the same wavelength but a different amplitude and a different phase.

The calculation of F(hkl) from a structure (x_j,y_j,z_j) is nothing but a summation of the waves originating from each atom (j) in the direction defined by (hkl).

$$F(hkl) = \sum_{j} f_{j} e^{2\pi i(hx_{j}+ky_{j}+lz_{j})}$$

It is important to note that every atom of the structure contributes to each and every reflection of the diffraction pattern.

Structure Factor Equation - Summary

- 4
- P
- If we know the structure of the protein in a given crystal represented by (f_j,x_j,y_j,z_j,B_j), we can calculate the diffraction pattern exactly.
- The calculated structure factor amplitudes and phases are typically referred to as $|F_{calc}(hkl)|$ and $\alpha_{calc}(hkl)$.

So Far We Have Done This ...

But What We Really Want To Do Is ...

$F(hkl) = |F(hkl)| e^{i\alpha(hkl)} = \sum_{j} f_{j} e^{2\pi i(hx_{j}+ky_{j}+lz_{j})}$

The Electron Density Equation

The Electron Density Equation

The electron density $\rho(x,y,z)$ is a three-dimensional function (with the unit e/Å³), which describes where in the unit cell of the crystal the electrons (and therefore the atoms) are. It is basically the image of the structure we want to determine.

$$\rho(x,y,z) = 1/V \Sigma_{hkl} [F(hkl)] e^{i\alpha(hkl)} e^{-2\pi i(hx+ky+lz)}$$

It is important to note that every reflection (hkl) of the diffraction pattern contributes to the electron density ρ at each and every position (xyz) in the unit cell of the crystal.

The Phase Problem

From the diffraction pattern, we can only obtain the intensities I(hkl) of the reflections (hkl).

$$\begin{split} I(hkl) &\propto F(hkl) \cdot F^*(hkl) \\ &= |F(hkl)| e^{i\alpha(hkl)} \cdot |F(hkl)| e^{-i\alpha(hkl)} \\ &= |F(hkl)|^2 \end{split}$$

The phase α (hkl) cannot be measured.

Phase Determination Methods

1. SIR, SIRAS, MIR, MIRAS

(single/multiple isomorphous replacement with anomalous scattering)

- 6 2
- 2. MAD

(multiple wavelength anomalous diffraction)

3. SAD (SAS)

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

(radiation damage induced phasing with anomalous scattering)

- 5. MR (molecular replacement)
- 6. Direct Methods

The Process of Phase Determination

Step 1: put $|F_P(hkl)|$ and $|F_{PH}(hkl)|$ on the same scale

$$(\mathsf{R} = 100 \bullet \Sigma_{\mathsf{hkl}} | |\mathsf{F}_{\mathsf{PH}}| - |\mathsf{F}_{\mathsf{P}}| | / \Sigma_{\mathsf{hkl}} |\mathsf{F}_{\mathsf{P}}|)$$

<u>Step 1</u>: put $|F_P(hkl)|$ and $|F_{PH}(hkl)|$ on the same scale

(R = 100 • Σ_{hkl} | |F_{PH}| - |F_P| | / Σ_{hkl} |F_P|)

<u>Step 2</u> : determine the positions of the heavy atoms (F_H) from the differences ($|F_{PH}(hkl)| - |F_P(hkl)|$)

<u>Step 1</u>: put $|F_P(hkl)|$ and $|F_{PH}(hkl)|$ on the same scale

($R = 100 \bullet \Sigma_{hkl} | |F_{PH}| - |F_{P}| | / \Sigma_{hkl} |F_{P}|$)

<u>Step 2</u> : determine the positions of the heavy atoms (F_H) from the differences ($|F_{PH}(hkl)| - |F_P(hkl)|$)

Step 3 : calculate $\alpha_P(hkl)$ from $|F_P(hkl)|$, $|F_{PH}(hkl)|$ and F_H

The Harker Construction - SIR

The Harker Construction - SIR

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

The Harker Construction - SIR

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

 \rightarrow density modification

Density Modification

Density Modification is a technique that uses additional information to improve an electron density

Density Modification

Density Modification is a technique that uses additional information to improve an electron density

solvent flattening

- non-crystallographic symmetry averaging
- □ histogram matching
- map interpretation and refinement

Density Modification

The Harker Construction - SIR

Instead of one value for $\alpha_{\rm P}({\rm hkl})$ we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

- \rightarrow density modification
- \rightarrow a second heavy atom derivative (MIR)

The Harker Construction - MIR

The Harker Construction - SIR

Instead of one value for $\alpha_{\rm P}$ (hkl) we obtain two possibilities \rightarrow phase ambiguity

How can this be made unambiguous ?

- \rightarrow density modification
- \rightarrow a second heavy atom derivative (MIR)
- \rightarrow incorporation of anomalous scattering (SIRAS)
- \rightarrow both ... (MIRAS)

1. conventional heavy-atom derivatization by soaking or co-crystallization

1. conventional heavy-atom derivatization by soaking or co-crystallization

2. quick-soaking

1. conventional heavy-atom derivatization by soaking or co-crystallization

- 2. quick-soaking
- 3. quick-soaking using anions (Br^- , I^- , I^-/I_2 , ...)

1. conventional heavy-atom derivatization by soaking or co-crystallization

- 2. quick-soaking
- 3. quick-soaking using anions (Br⁻, I⁻, I⁻/I₂, ...)
- 4. pressurization using noble gases (Xe, Kr)

2. quick-soaking

1. conventional heavy-atom derivatization by soaking or co-crystallization

- 3. quick-soaking using anions (Br^{-} , l^{-} , l^{-}/l_{2} , ...)
- 4. pressurization using noble gases (Xe, Kr)
- covalent modification of the protein (e.g. Met \rightarrow Se-Met) 5. or of DNA (T \rightarrow Br-U)

Phase determination methods

1. SIR, SIRAS, MIR, MIRAS

(multiple wavelength anomalous diffraction)

(single/multiple isomorphous replacement with anomalous scattering)

- Ø

(single wavelength anomalous diffraction/scattering)

4. RIP, RIPAS

3. SAD (SAS)

2. MAD

(radiation damage induced phasing with anomalous scattering)

- 5. MR (molecular replacement)
- 6. Direct Methods

The MR method

Molecular Replacement can be used to solve a structure when a homologous structure is available.

When the homologous structure can be correctly oriented and positioned (6 parameters), it can be used as a starting point for phase calculation.

Nowadays, about 2/3 of all structures are solved by Molecular Replacement.

The Patterson Function

 $P(u,v,w) = 1/V \Sigma_{hkl} [F(hkl)]^2 \cos 2\pi(hu+kv+lw)$

P(u,v,w) can be calculated without phases.

It can be shown that P(u,v,w) is equivalent to a convolution of $\rho(x,y,z)$ with itself.

$$\mathsf{P}(\mathsf{u},\mathsf{v},\mathsf{w}) = 1/\mathsf{V} \int \rho(\mathsf{x},\mathsf{y},\mathsf{z}) \ \rho(\mathsf{x}+\mathsf{u},\mathsf{y}+\mathsf{v},\mathsf{z}+\mathsf{w}) \ \mathsf{d}\mathsf{x} \ \mathsf{d}\mathsf{y} \ \mathsf{d}\mathsf{z}$$

P(u,v,w) can also be calculated from a known structure.

Molecular Replacement

Molecular Replacement

Molecular Replacement - Difficulties

The search model is not the same as the target structure. Consequently, the respective Patterson functions will not be identical.

P(u,v,w) from the model contains only intramolecular vectors, whereas P(u,v,w) from the diffraction data contains intra- and intermolecular vectors.

Calculation of the Electron Density

The Electron Density Equation

Once the phases α (hkl) have been determined, the threedimensional electron density function $\rho(x,y,z)$ can be calculated.

$$\rho(x,y,z) = 1/V \Sigma_{hkl} [F(hkl)] e^{i\alpha(hkl)} e^{-2\pi i(hx+ky+lz)}$$

The electron density $\rho(x,y,z)$ is a three-dimensional function (with the unit e/Å³), which describes where in the unit cell of the crystal the electrons (and therefore the atoms) are. It is basically the image of the structure we want to determine.

Electron Density

All that is left to do now is to interpret the electron density in terms of the three-dimensional structure.

Electron Density Maps

$\rho(x,y,z) = 1/V \Sigma_{hkl} [F(hkl)] e^{i\alpha(hkl)} e^{-2\pi i(hx+ky+lz)}$

₽₽.
1
/

Maps	Amplitudes	Phases	Weight(s)
F _o -map	mF _{obs}	$lpha_{\sf obs}$	f.o.m.

Electron Density Maps

$\rho(x,y,z) = 1/V \Sigma_{hkl} [F(hkl)] e^{i\alpha(hkl)} e^{-2\pi i(hx+ky+lz)}$

Maps	Amplitudes	Phases	Weight(s)
F _o -map	mF _{obs}	$lpha_{ m obs}$	f.o.m.
(F _o -F _c)-map	F _{obs} - F _{calc}	$lpha_{ m calc}$	-
(2F _o -F _c)-map	2F _{obs} - F _{calc}	$lpha_{ m calc}$	-
SigmaA-map	2mF _{obs} - DF _{calc}	$lpha_{ m calc}$	f.o.m., D

Amplitudes vs. Phases

$\rho(\mathbf{x},\mathbf{y},\mathbf{z}) = 1/V \Sigma_{hkl} \left[\mathsf{F}(hkl) \right] e^{i\alpha(hkl)} e^{-2\pi i(hx+ky+lz)}$

Information Content and Resolution

In crystallography, the resolution d is typically defined by the maximum angle 2θ , to which diffraction can be observed.

Information Content and Resolution

Information Content and Resolution

Source: http://ucxray.berkeley.edu/~jamesh/movies/

Structure Refinement

Refinement and the R-factor

Refinement is a mathematical procedure, which iteratively improves the fit between the experimental diffraction data (F_{obs}) and the theoretical diffraction data, which can be calculated from the structural model (F_{calc}) at any given stage.

Mathematically, refinement is the minimization of the following function:

$$f(x_j, y_j, z_j, B_j) = \sum_{hkl} w_{hkl} (|F_{obs}(hkl)| - |F_{calc}(hkl)|)^2$$

Refinement and the R-factor

Refinement progress can be monitored using the so-called crystallographic R-factor:

$$\mathsf{R} = 100 \bullet \Sigma_{\mathsf{hkl}} \mid |\mathsf{F}_{\mathsf{obs}}| - |\mathsf{F}_{\mathsf{calc}}| \mid / \Sigma_{\mathsf{hkl}} \mid |\mathsf{F}_{\mathsf{obs}}|$$

This constant feedback between the experimental data (F_{obs}) and the model (F_{calc}) is one of the greatest strengths of crystallography.

However ...

R and R_{free}

However, the target function minimized during refinement and the progress monitor have a very similar form. Anything that will minimize $f(x_j, y_j, z_j, B_j)$, will also lower the R-factor. Therefore, the R-factor is not a good measure for refinement progress, because it is not independent.

all (hkl)

R and R_{free}

However, the target function minimized during refinement and the progress monitor have a very similar form. Anything that will minimize $f(x_j, y_j, z_j, B_j)$, will also lower the R-factor. Therefore, the R-factor is not a good measure for refinement progress, because it is not independent.

In 1992, the free R-factor was introduced.

Parameters vs. Observables

Example:

A protein of 182 amino acids, 1458 atoms,

40% solvent content.

Resolution	No. of (hkl)
3.0 Å	3,500
2.5 Å	6,800
1.9 Å	13,500
1.5 Å	29,800
1.2 Å	58,800
1.0 Å	81,300

x_j,y_j,z_j: 4,374 parameters B_{j,iso}: 1,458 parameters B_{i,aniso}: 8,748 parameters

Constraints and Restraints

<u>Constraints</u> are boundary conditions, i.e. pieces of information, which reduce the number of parameters.

E.g. all atoms of one amino acid have the same B_{iso}

<u>Restraints</u> are boundary conditions, i.e. pieces of information, which increase the number of observables.

E.g. bond lengths and bond angles should be close to the very accurate values, which can be obtained from high resolution peptide structures.

This adds the term $g(x_j, y_j, z_j) = \Sigma_j w (d_{obs} - d_{ideal})^2$ to the target function for refinement.

N C C O C

	HEADER TITLE	HEI CAI	ME PI RBONN	ROTE I MONOX	EN KY-M	YOGLOBI	N, ATOMI	C RESOLU'	25-FE TION	B-98	1A6G
ĺ	EXPDTA	X-1	RAY I	OIFFF	RACT	ION					
	•••										
	ATOM	1	Ν	VAL	А	1	-4.040	15.048	13.602	1.00	37.04
	ATOM	2	CA	VAL	А	1	-3.621	15.574	14.908	1.00	25.44
	ATOM	3	С	VAL	А	1	-2.766	14.564	15.637	1.00	24.20
	ATOM	4	0	VAL	А	1	-3.155	13.399	15.760	1.00	27.65
	ATOM	5	СВ	VAL	А	1	-4.863	15.869	15.757	1.00	32.48
1	ATOM	6	CG1	VAL	А	1	-4.402	15.954	17.205	1.00	38.33
i	ATOM	7	CG2	VAL	А	1	-5.600	17.125	15.353	1.00	45.60
	ATOM	8	Ν	LEU	А	2	-1.588	14.922	16.125	1.00	17.99
	ATOM	9	CA	LEU	А	2	-0.767	13.985	16.878	1.00	16.85
	ATOM	10	С	LEU	А	2	-1.326	13.777	18.289	1.00	16.94
29	ATOM	11	0	LEU	А	2	-1.795	14.765	18.873	1.00	19.44
1	ATOM	12	СВ	LEU	А	2	0.694	14.436	17.007	1.00	15.72
OPAGY TO	ATOM	13	CG	LEU	А	2	1.598	14.164	15.773	1.00	14.99
0-40	ATOM	14	CD1	LEU	А	2	1.269	15.130	14.656	1.00	15.12
	ATOM	15	CD2	LEU	А	2	3.080	14.254	16.161	1.00	14.37
5	ATOM	16	Ν	SER	А	3	-1.218	12.546	18.763	1.00	16.86
4											

END

C N C C O C C C C N

Ν С С Ο С С С Ν С С 0 С С С С Ν

HEADER	HE	ME PI	ROTE	IN				25-FE	B-98	1A6G
TITLE	CA	RBONI	MONO	XY-I	MYOGLC	BIN, ATOMI	C RESOLU	TION		
EXPDTA	X-	RAY 1	DIFFI	RAC	TION					
•••										1
ATOM	1	Ν	VAL	А	1	-4.040	15.048	13.602	1.00	37.04
ATOM	2	CA	VAL	А	1	-3.621	15.574	14.908	1.00	25.44
ATOM	3	С	VAL	А	1	-2.766	14.564	15.637	1.00	24.20
ATOM	4	0	VAL	А	1	-3.155	13.399	15.760	1.00	27.65
ATOM	5	СВ	VAL	А	1	-4.863	15.869	15.757	1.00	32.48
ATOM	6	CG1	VAL	А	1	-4.402	15.954	17.205	1.00	38.33
ATOM	7	CG2	VAL	А	1	-5.600	17.125	15.353	1.00	45.60
ATOM	8	Ν	LEU	А	2	-1.588	14.922	16.125	1.00	17.99
ATOM	9	CA	LEU	А	2	-0.767	13.985	16.878	1.00	16.85
ATOM	10	С	LEU	А	2	-1.326	13.777	18.289	1.00	16.94
ATOM	11	0	LEU	А	2	-1.795	14.765	18.873	1.00	19.44
ATOM	12	СВ	LEU	А	2	0.694	14.436	17.007	1.00	15.72
ATOM	13	CG	LEU	А	2	1.598	14.164	15.773	1.00	14.99
ATOM	14	CD1	LEU	А	2	1.269	15.130	14.656	1.00	15.12
ATOM	15	CD2	LEU	А	2	3.080	14.254	16.161	1.00	14.37
ATOM	16	Ν	SER	А	3	-1.218	12.546	18.763	1.00	16.86

END

HEADER	HEME PROTEIN 25-FEB-98								1A6G		
TITLE	CARBONMONOXY-MYOGLOBIN, ATOMIC RESOLUTION										
EXPDTA	Х-	RAY 1	DIFFI	RAC	TION						
ATOM	1	Ν	VAL	А	1	-4.040	15.048	13.602	1.00	37.04	
ATOM	2	CA	VAL	А	1	-3.621	15.574	14.908	1.00	25.44	
ATOM	3	С	VAL	А	1	-2.766	14.564	15.637	1.00	24.20	
ATOM	4	0	VAL	А	1	-3.155	13.399	15.760	1.00	27.65	
ATOM	5	СВ	VAL	А	1	-4.863	15.869	15.757	1.00	32.48	
ATOM	б	CG1	VAL	А	1	-4.402	15.954	17.205	1.00	38.33	
ATOM	7	CG2	VAL	А	1	-5.600	17.125	15.353	1.00	45.60	
ATOM	8	Ν	LEU	А	2	-1.588	14.922	16.125	1.00	17.99	
ATOM	9	CA	LEU	А	2	-0.767	13.985	16.878	1.00	16.85	
ATOM	10	С	LEU	А	2	-1.326	13.777	18.289	1.00	16.94	
ATOM	11	0	LEU	А	2	-1.795	14.765	18.873	1.00	19.44	
ATOM	12	СВ	LEU	А	2	0.694	14.436	17.007	1.00	15.72	
ATOM	13	CG	LEU	А	2	1.598	14.164	15.773	1.00	14.99	
ATOM	14	CD1	LEU	А	2	1.269	15.130	14.656	1.00	15.12	
ATOM	15	CD2	LEU	А	2	3.080	14.254	16.161	1.00	14.37	
АТОМ	16	Ν	SER	А	3	-1.218	12.546	18.763	1.00	16.86	

END

- 4
- A crystal structure constitutes a space- and time-averaged structure.
- The occupancy value reflects in how many unit cells a certain atom is in the position indicated by its coordinates.
- The atomic displacement parameter (temperature factor, B-factor) describes the smearing of the electron cloud of the atom around its equilibrium position.
- Hydrogen atoms are typically not seen in an X-ray structure, but most of their positions can be inferred.

 Depending on the resolution of the underlying data, and on the care which has been take to interpret the data, there may be various uncertainties and errors in the structure.

- coordinate errors (typically 0.2 Å for a 2.0 Å resolution structure)
- misinterpreted or overlooked ligands or water molecules
- side chain orientations (Asn-, His-, Gln-flips)
- incorrect side chain conformers
- peptide flips
- peptide bond conformation (cis or trans)
- sequence registration errors
- errors in the chain trace

Refinement R and R_{free}

- The higher the resolution, the smaller R and R_{free} should be.
- The higher the resolution, the smaller the gap between R and R_{free} should be.

- Refinement R and R_{free}
- Fit to electron density map

 Electron density maps for all PDB Structures can be downloaded from the Electron Density Server at Uppsala University (http://eds.bmc.uu.se/eds/)

- Refinement R and R_{free}
- Fit to electron density map
- Residual peaks in difference electron density map

- Refinement R and R_{free}
- Fit to electron density map
- Residual peaks in difference electron density map
- Omit electron density for ligands

- Refinement R and R_{free}
- Fit to electron density map
- Residual peaks in difference electron density map
- Omit electron density for ligands
- Ramachandran plot

Ramachandran Plot

- Refinement R and R_{free}
- Fit to electron density map
- Residual peaks in difference electron density map
- Omit electron density for ligands
- Ramachandran plot
- Geometric parameters
 - A well refined structure should exhibit not more that 0.02 Å r.m.s. deviation from ideal bond lengths and not more that 2.0° r.m.s. deviation from ideal bond angles.
 - Needless to say, that planar groups should be planar, amino acids should have the correct chirality, etc.

- Refinement R and R_{free}
- Fit to electron density map
- Residual peaks in difference electron density map
- Omit electron density for ligands
- Ramachandran plot
- Geometric parameters
- Hydrogen atom clash analysis

Hydrogen Bond Clash Analysis

see: http://molprobity.biochem.duke.edu

Literature

For beginners:

G. Rhodes. Crystallography Made Crystal Clear, Academic Press (1993).

More advanced:

J. Drenth. Principles of Protein X-ray Crystallography, Springer Verlag (1994).

Summary - Structure Determination

For more information, questions, etc.

