
WS 2007/08 Übung zu Grundlagen der Strukturanalyse

Übung V: Protein Structure Comparison
17 and 24. January 2008

Please deal with the following three tasks and submit your answers to torda@zbh.uni-hamburg.de not

later than 7. January 2008. You have longer than usual to do write a report. Do not be scared by the

programming.

Please send your report as an ascii, word or pdf file. Please do not use staroffice.

1. In the lectures, a little algorithm to compare two structures was presented on slide [54]. Given

some alignment of the residues this algorithm iteratively superimposes one structure onto the other

and removes the worst aligned residue pair until the difference falls below a threshold. You can

find an implementation in
/home/torda/uebung_comparison/src

a) Copy the source code into your home directory with a command like
cp -r /home/torda/uebung_comparison/src .

b) Change into that directory and check if you copied the following files:

dpstrct.c

dpstrct.h

evalali.c

evalali.h

main.c

Makefile

superimpose.c

superimpose.h

c) Now compile the source code with
make

This should work without any problems. If not, ask for help.

You can use
make clean

to remove any executables, object files and backup files. This is sometimes necessary if you

want to recompile.

 Text and code originally written by Gundolf Schenk

Z:\winter_0708_teaching\908_uebungen\uebung5_comparison.doc 17.01.2008 [1 / 6]

mailto:schenk@zbh.uni-hamburg.de

d) The executable evalali.x takes three command line arguments: a threshold and two pdb files.

The program will store a superimposed version of the first pdb file in the current directory. The

output can be very long, so it is easiest to view it if you redirect it to a file (>./out) and look

at the output with less ./out

The program is not fully functional yet, so open the files containing the source code (*.c and

*.h) in your favourite editor. The code is spread across four modules (i.e. seven files). Begin by

looking at the main module. It calls functions from the WURST package and from the module

evalali, which in turn uses functions from the modules superimpose and dpstrct. Read the

comments in the header files (*.h) for hints on what the modules do. To see how the functions

are implemented, you may look at the C source (*.c).

The main routine loads a structure and a template from two pdb files. Their sequences are

aligned globally using a substitution matrix (BLOSUM62) via the Needleman & Wunsch

algorithm. The structure is then superimposed onto the template and “interesting” residues are

highlighted in the sequence alignment by the function selectInterestingAtoms().

Open the file evalali.c and look for the function selectInterestingAtoms(). The

algorithm from the lectures is implemented here. First it creates the dp list from an alignment.

The list is a C-array of struct dpStrct. See the file dpstrct.h for its definition. Then it

superimposes the structure onto the template using the alignment information stored in dp and

updates the distance information in dp and sorts it. Then some difference measure of the

aligned alpha carbons is calculated and printed to stdout. In the following while loop, the dp

list is shortened by the residue pair with the largest (Cα) distance; the superposition, the dp list

and the difference measure are updated until the difference falls below a given threshold or less

then four aligned residue pairs are left in the dp list. A minimum of three residue pairs are

needed to calculate a rotation matrix.

e) Now, have a look at the function alphadiff(). As arguments it takes the structure, the

template, the dp list and its length and a flag. This flag controls the kind of difference measure

used on the alpha carbons. Your task is now to code up two difference measures, the root mean

squared distance (RMSD) and the distance matrix error (DME). The DME is also known as

root mean squared distance matrix difference. Remember from the lectures:

∑
=

′−=
N

i
ii rr

N
RMSD

1

21 vv

() ()
2

1 11
2 ∑∑

= =

′−′−−
−

=
N

i

N

j
jiji rrrr

NN
DME vvvv

Write your code for the two measures at the appropriate places inside the switch statement.

Z:\winter_0708_teaching\908_uebungen\uebung5_comparison.doc 17.01.2008 [2 / 6]

Replace the comments, the error messages and the exit call with your code. Some hints:

The alpha carbons of the whole protein are stored in an array of three-dimensional vectors

called rp_ca, which is a member of the struct coord. Each vector has members x, y and z. Use

the dp list to access the aligned residues via their position in rp_ca. See the function

updateDpDist() in dpstrct.c for a sample usage. For definitions of the involved C-structs see

files dpstrct.h and coord.h. For mathematical operations you may use anything you can find in

the WURST package. Look in

/home/torda/uebung_comparison/wurst/src

or from the standard C library, e.g. math.h (see www.cppreference.com). If you would like a

quick reminder of C syntax, look at
www.num.math.uni-goettingen.de/Dokumentationen/C/Einfuehrung/

There is also a fair interface description of the most relevant functions of the standard C library

at the bottom of the right navigation frame.

Please obey some coding rules:

• write robust and fast code (sometimes a tradeoff)

• avoid code duplication

• comment your code sensibly

• use only ANSI-C (i.e. remove all compiler warnings and errors)

• indent in the format of the rest of the code (similar to Kernighan & Richie)

f) Compile two versions of the program,one using RMSD and one using DME as difference

measure. To do so, find the lines where the alphadiff() function is called in the function

selectInterestingAtoms() and make sure that their last parameters are YES. Then

compile the program with make. Rename the executable evalali.x with mv evalali.x

evalali_rmsd.x. Now, change the function's parameters to NO, recompile and rename with

mv evalali.x evalali_dme.x. By now you should have two executables, which you

might want to use with two structures, e.g. 1zik and 1et1.

g) Compare the algorithm from the lectures with the implementation in evalali.c. What is different

(algorithmically) ? Do you think it is a serious difference ? What impact could it have on the

result ?

2. Load the two proteins 1ECA and 1LHS from the PDB repository in UCSF Chimera.

a) Change to ribbon view. Superimpose the two molecules:

Tools>>Structure Comparison>>MatchMaker

The MatchMaker window should appear.

Z:\winter_0708_teaching\908_uebungen\uebung5_comparison.doc 17.01.2008 [3 / 6]

http://www.cppreference.com/

Select 1ECA as the reference structure and 1LHS as the structure to match. Use

SmithWaterman as alignment algorithm and default values for the rest, and click 'OK'. The

RMSD is given in the status bar of the main window.

Provided that the box 'show alignment(s) in MultAlign Viewer' was checked, you should find

the sequence alignments in the popup MultAlign windows. You can save the alignment in

FASTA format for your report:

From the MultiAlignViewer window,

File>>Save As...

Perform another fit for the molecules using the NeedlemanWunsch alignment algorithm. In

your report, describe the change in RMSD, and explain why it is different.

b) Optimizing the superposition:

From the MultAlignViewer window,

Structure>>Match...

Again, select 1ECA as the reference structure, and 1LHS as the structure to match, and check

the box 'Iterate by pruning long atom pairs'. Enter a number to the textfield of 'until no pair

exceeds __ angstroms. Click 'Apply' to observe the change (Hints: You can start from 6 Å… ,

then scale it down to 4 Å… , 3 Å… , 2 Å… ...).

c) Assessing the fit:

From the MultAlignViewer window,

Structure>>Assess Match...

Select IECA as the reference structure and 1LHS as the structure to evaluate, click 'OK'. Select

the Attrribute 'matchDist' and move one bar in the histogram to zero. Input a number (e.g. 2.0)

for the second bar and make sure that the box 'between markers (inclusive)' is checked, click

'Apply'. Input another number (e.g. 1.0) for the second bar, and click 'Apply' again. You should

see which residues fit better from the alignment. Include the alignment with selected residues

highlighted in your report:

File>>Save EPS...

Switch to the 'Render' tab, select the attribute 'matchDist' again and set the red bar to 2.0, the

white bar to 1.0, and the blue bar to zero. Click 'Apply'. Save an image of the coloured

molecules.

Z:\winter_0708_teaching\908_uebungen\uebung5_comparison.doc 17.01.2008 [4 / 6]

d) Exploring the chemical features:

What are the differences between these two proteins (e.g. the ends, or certain parts between the

helices)? Once the structures are superimposed, you can compare their chemical features more

closely. Display the haem group of both proteins:

Select>>Structure>>ligand

Action>>Surface>>show

You should see the superimposed haem groups. Select the conserved residues of the molecules:

From the MultAlignViewer window,

Structure>>Select by Conservation...

Select the attributes of 'residues' and highlight both models. Pick 'mavPercentConvered' for the

Select Attribute, and move the markers to the one end (100). Use default values for the rest,

and click 'OK'.

Which residues are near the haem group, and how well are they conserved in sequence and

geometry. Are the matched residues in each structure interacting with the Fe-porphyrin

complex in the same way?

e) Other Structural Alignments:

Explore other matching criteria.

From the MultAlignViewer window,

Structure>>Match...

Try 'Match highly conserved residues only', which causes only the wellconserved (at least

80%) positions in the alignment to be used for the leastsquares fit, and different values for the

'Iterate by pruning long atom pairs until no pair exceeds [x] angstroms', which refers to an

iterative fitting procedure. In each cycle, atom pairs are removed from the match list and the

remaining pairs are fitted, until no matched pair is more than x angstroms apart. The atom pairs

removed are either the 10% farthest apart of all pairs or the 50% farthest apart of all pairs

exceeding the cutoff, whichever is the lesser number of pairs. The result is that the best

matching "core" regions are maximally superimposed; conformationally dissimilar regions

such as flexible loops are not included in the final fit, even though they may be aligned in the

sequence alignment.

Make a note of how many residues are aligned, and the RMSD of the alignment.

f) In the MultAlignViewer window, you can quickly get an estimate of sequence similarity.

Under 'Tools', you should find 'Percent identity...'. Note down the value for this pair of

proteins. Looking at the sequence alignment, count the number of gaps.

The sequence similarity here is less than 25%. This is not very high, but the structures appear

very similar. Would you expect this to be the case for all apirs of proteins? What other factor

Z:\winter_0708_teaching\908_uebungen\uebung5_comparison.doc 17.01.2008 [5 / 6]

determines the significance of an alignment? Although the sequence similarity is low, are there

any clues as to why it works so well ?

3. Use your two programs from task 1 with 1ECA and 1LHS. Compare the results of the two

programs to the result chimera produces when 'Iterate by pruning long atom pairs until no pair

exceeds [x] angstroms' is checked in the 'Match Structures by Seq' dialog. Use your results from

task 2 here. Describe any differences and why they might occur.

Z:\winter_0708_teaching\908_uebungen\uebung5_comparison.doc 17.01.2008 [6 / 6]

