
1

Übung 6: Homology Modeling

1. Introduction..1

2. What is MODELLER?...1

3. Using MODELLER ...1

4. Measuring Model Quality ..5

5. Exercise: Modelling Ferredoxin ..6

1. Introduction

 This is about building a model for a protein when you only know its sequence and

using the structure of related proteins. We use the program MODELLER. A major point of the

assignment is to see how the quality of the results depend on the initial alignments.

2. What is MODELLER?

 Constructing a model for a protein, using its homology to other proteins means taking

structural features from the parent structure(s) based on sequence alignment. These are then

combined with restraints based on the sequence being modeled. MODELLER attempts to

automate the homology modeling process. It can use multiple sequence alignments. It can use

multiple templates which were not discussed in lectures.

 The program uses distance geometry and energy minimisation. Given a sequence and

template structure(s), it can make an alignment and decide which parts of a template structure

are probably conserved in the sequence. This alignment is used to build a set of distance

restraints which is then used by a distance geometry routine. The initial structures are then

refined by energy minimization.

 MODELLER balances the physical requirements of the modeled sequence against the

geometric relations obtained from the template structures. The code and even more

information are at: http://salilab.org/modeller/modeller.html.

3. Using MODELLER

MODELLER reads a script of instructions including run-time variables and procedural

function calls. The variables are lists of flags, or strings, and set like this:

2

 Simplemodel.py
 from modeller.automodel import * # Load the automodel class

log.verbose() # request verbose output
env = environ() # create a new MODELLER environment
directories for input atom files
env.io.atom_files_directory = './:./atom_files'
a = automodel(env,
 alnfile = 'fdxhomologs.pir', # alignment filename

 knowns = ('1fxd', '1fdn'), # codes of the templates
 sequence = 'ferodox') # code of the target

a.auto_align() # get an automatic alignment
a.make() # do the actual homology modelling

The KNOWNS variable is a list of structure names, and SEQUENCE is a string containing the

name of the sequence to be modeled. These names correspond to the entries for each protein

in the alignment file:

 fdxhomologs.pir: A PIR file
 # A Comment
 # This is the .pir file entry for 1fdn
 >P1;1fdn
 structure:1fdn:FIRST:@:55:@:.:.:.:.
 *
 >P1;1fxd
 structure:1fxd:FIRST:@:58:@:.:.:.:.
 *
 # This entry doesn't get used by simplemodel.top
 >P1;5fd1
 structure:5fd1:FIRST:@106:@:ferredoxin:Azotobacter vinelandii: 1.90.0.92
 *
 >P1;ferodox
 sequence:1fdx:1: :54: :ferredoxin:Peptococcus aerogenes: 2.00:-1.00
 AYVINDSCIACGACKPECPVNIIQGSIYAIDADSCIDCGSCASVCPVGAPNPED*
 # The * indicates the end of the sequence entry

The alignment file is like a flat-file database. Each '>P1;blah' line is a tag for the protein data

called 'blah'. MODELLER looks for tags with the same names as those given in the

SEQUENCE and KNOWNS variables defined in the .top file.

The line after a tag is a ':' separated set of fields defining the protein data. For 5fd1 the first

field is 'structure', and the next is the structure's PDB name. MODELLER uses this to search

for the protein's PDB at each of the paths defined by another runtime variable called

ATOM_FILES_DIRECTORY. The next four fields are for the beginning and end residue

number and chain ID that define the stretch of coordinates which MODELLER should read. In

this case, 'FIRST:@' means the first residue in the first chain of the PDB file, and '60:@'

means the residue 60 (in PDB file numbering) in the same chain. The rest of the fields are

typical sequence database entries (the protein name, and species), and the last two are the

resolution and R factor for the X-ray structure. These are defined as a wildcard ('.') in most of

the other entries, and the extra information is not important for this example.

3

The 'ferrodox' entry is different, because it is the sequence to be modeled. The first field is

'sequence' - indicating that there is no structure. The second is a filename that will be used if a

model is generated, and the rest give the numbering and amino acid chain code that will be

used when the model is written.

The final line(s) give sequence information for the protein, as bounded by the start and end

positions given in the fields in the previous line. Sequence entries must be in upper case,

single letter amino acid codes, where the '*' is the terminator for the sequence. Any whitespace

characters are ignored. When the 'START:@:XX:@' field is used, where XX is some number,

no sequence is necessary. However, for 'ferrodox', the amino acid sequence must be defined,

and is given as shown. It is important that there are precisely the same number of amino acids

as is given in the preceding header by the start and end amino-acid numbering (54 a.a.

characters in this case). The PIR format allows the representation of multiple alignments. A '-'

character can be used for the sequences to indicate a gap. An example of this will be shown

later.

The alignment filename is given to MODELLER via the ALNFILE variable, and any extra

PDB file paths are defined in ATOM_FILES_DIRECTORY - the filenames and paths are all

relative to the current working directory in this example. The final command 'CALL' instructs

MODELLER to execute the procedure called 'full_homol', the fully automatic modeling

function, which results in the following:

1. A log file is created, called simplemodel.log.

2. MODELLER reads fdxhomologs.pir, finds the unknown sequence and also reads in the

structures specified in KNOWNS.

3. A multiple alignment of all the sequences is made and written to a new .pir file called

fdxhomologs.pir.ali.

4. The known structures are analysed based on the alignment, and used to make a set of

distance restraints.

5. A model is made by distance geometry and refined.

6. The model is written out as ferodox.B99990001.pdb.

To run MODELLER using this script, make a new directory, change to it, and enter the

following shell commands:
 > setenv PATH "/home/torda/bin:$PATH"
 > cp -R /home/torda/uebung_06_modeller/feredox .
 > cd ferodox
 > mod8v2 simplemodel.py

4

to set up the path for MODELLER, and run the fully automatic modeling script file.

If everything has gone well, the MODELLER command will finish after a few minutes. The

directory listing should then look something like:

 ferodox> ls
 atom files ferodox.D00000001 ferodox.rsr
 fdxhomologs.pir ferodox.V99990001 ferodox.sch
 fdxhomologs.pir.ali ferodox.ini ferodox.B99990001.pdb
 ferodox.mat simplemodel.log simplemodel.py

 The ferodox.* files are related to the modeled sequence. The others are the log file

simplemodel.log written by MODELLER, and the multiple alignment that was actually used

to generate the model (fdxhomologs.pir.ali).
 fdxhomologs.pir.ali : Describing a multiple sequence alignment to match the ferodox sequence to two

homologs:

 >P1;1fxd
 structure:1fxd:FIRST:@:58 :@:.:.: 0.00: 0.00
 PIEVNDDCMACEACVEIC--PDVFEMNEEGDKAVVINP--DSD-LDCVEEAIDSCPAEAI-VRS*

 >P1;1fdn
 structure:1fdn:FIRST:@:55 :@:.:.: 0.00: 0.00
 AYVINEACISCGACEPECPV-NAISSG-D-DRYVID-ADT-CID---CGACAGVCPVDAP-VQA*

 >P1;ferodox
 sequence:1fdx:1 : :54 : :ferredoxin:Peptococcus aerogenes: 2.00:-1.00
 AYVINDSCIACGACKPECPV-NIIQ----GSIYAIDADS--CID---CGSCASVCPVGAPNPED*

 The alignment also yields a distance matrix: ferodox.mat: This is the 'distance' between

each sequence, as defined by MODELLER's own multiple alignment (the multiple sequence

alignment is shown in the .pir.ali file).

The most important files are the generated coordinates:

ferodox.B99990001.pdb: The PDB coordinates for the model. The 9999 indicates that the

coordinates are modeled rather than 'measured', and 0001 indicate that this is model number 1.

In addition to 'ATOM' records, there are two informational entries in the file:
EXPDTA MODEL, MODELLER Version 7v7 2006/04/....
REMARK MODELLER OBJECTIVE FUNCTION: 1391.2858

The REMARK line gives the 'energy' value or objective function for the model (more negative

is better).

The rest of the files give detailed output from the steps of model construction and

minimization.

5

ferodox.ini: The initial model generated by distance geometry.

ferodox.rsr: The restraints applied to the atoms in the model, during construction and

minimization. It lists pairs of atoms and the ideal distances.

ferodox.sch: The energy function schedule used in the optimization.

ferodox.V99990001: Heavy atom violations' for each residue.

ferodox.D00000001: The progress of optimization from model 0 (ferodox.ini) to model 1

(ferodox.B99990001.pdb).

That was a very simple example. In the next section, we see how one can use better

alignments from outside the MODELLER program to make better models.

4. Measuring Model Quality

The protein sequence used in this exercise is from a known structure (PDB ID 1dur), so it is

possible to determine if a model is good or bad simply by comparing it to the real protein

structure. In a real homology modeling experiment, the true structure is not known, so it is

necessary to use tools for analyzing the quality of the models. Such a measurement of model

quality can be based on physical energy functions - which give a measure of structural quality,

but it can be hard to estimate the absolute quality with these. The alternative is to assess the

backbone conformations and side-chain packing using statistical observations of the typical

geometry of proteins (knowledge based energy functions). One of these protein structure

validation programs, called ERRAT, will be used in this exercise. The program examines a

PDB file, and generates a score based on the quality of the local structure surrounding each

residue, as compared to the typical ranges of dihedral angles and side chain contacts observed

in real proteins. You can find the webserver for the program at:

 http://nihserver.mbi.ucla.edu/ERRATv2/

 To use the server, upload your PDB file using the web form. The program generates a

plot which gives a measure of the structure error at each residue in the protein. It also

calculates an overall score for the structural quality. You can read more information about the

method by following the links on the ERRAT server page. Figure 1 shows two ERRAT

assessments - one for the model generated by the simplemodel.py script, and along side it is

the plot for the real structure for the sequence. The overall measure of quality is given at the

top of the plot and each bar in the histogram is shaded according to the significance of the

local structural error.

Figure 1. ERRAT output for the Ferredoxin structure and model.

The validation plot for the real structure (PDB code 1dur) is on the left, and the model

generated by MODELLER is on the right. The overall quality factor is given just above

the plot of structure error.

5. Exercise: Modelling Ferredoxin

In this exercise, you will reproduce the ferredoxin model and structural quality analysis which

were described in the last two sections. You will then try to generate a better model, as

assessed by ERRAT, by modifying the alignment. This will involve making a multiple

sequence alignment with a variety of sequences and gap penalties, in order to get a better

mapping of the sequence on to the template structures.

Your report should include an introduction, methods, results, and conclusion section. It

should be brief. Your introduction should be a paragraph explaining what you have

investigated, and what proteins you have used.

The methods section should be one or two paragraphs explaining how a model of a

protein's structure can be generated by using its homology to some known structures. Finally,

you should summarize the procedure you have followed, and briefly describe the tools you

have used to generate the alignments, homology models, and for measurement of model

quality.

The results section should contain a short description of how each model's alignment was

made, along with the alignment, and the quality of the model that was generated from it. The

6

7

quality should be described by the ERRAT plot, its overall quality measurement, and the

MODELLER objective function value. For each alignment, try to give a reason why there is a

poor region in the model structure.

In your conclusion, you should discuss the reasons why the different alignments have

produced models of better quality, and describe which alignment was most effective for

obtaining a good model, and why. The aspects that you should discuss will be shown later.

If you have followed all the steps described, and sent ferodox.B99990001.pdb to ERRAT

server, you should get a result which is similar to the left one on figure 1. Save is as a .jpg or

postscript file for your report.

Examine the generated model (ferodox.B99990001.pdb with chimera), its ERRAT plot, and

the alignment file (fdxhomologs.pir.ali). This shows the parts of the other ferredoxin structures

which were used to make the model. Comment on the quality, using these aspects as a guide:

Find the residues that ERRAT suggests are badly modelled (grey or black in histogram).

Using the viewer program, see if these are α–helical, β-sheet or not regular structure.

Are the poorly modelled regions the result of graphs or insertions?

 Making a better alignment

Use the EMBNet ClustalW web form to make an alignment between the ferodox sequence,

and the two templates (1fxd and 1fdn):

 http://www.ch.embnet.org/software/ClustalW.html

1. Make a copy of the fdxhomologs.pir.ali file, and change it to a FASTA file by

removing the ':' separated fields line and the 'P1;' from the tags.

2. Remove the '*' and any '-' symbols from the sequence entries.

3. Change the tag of the ferodox entry to ferodoxM.

4. Save the FASTA file as clustalM.fasta as you will use it again later.

5. Paste the file into the form. Change the output format to 'PIR' but leave the alignment

parameters at their defaults (BLOSUM matrix, 10 for gap opening and end gap penalties, and

0.05 for extension).

6. Select the 'RunClustalW' button to make the alignment.

7. The PIR file will be presented shortly, as a link ('PIR') amongst a number of links to

other alignment file formats. Save the file as fdxCWM.pir.

8. Edit the new alignment so it can be used by MODELLER:

8

- Copy the ':' separated fields line for each protein into the new alignments so that

MODELLER can match the structure files to the sequence entries.

- Save it.

9. Make a copy of simplemodel.py, called cwMmodel1.py. Edit this new .py file so it will

read the ClustalW alignment and make a new model:

- Change the ALNFILE variable:

 alnfile = 'fdxCWM.pir'

 ALNFILE is the variable that defines the filename for an alignment that is to be used

by the modelling routine.

- Change the SEQUENCE variable assignment so that SEQUENCE is set to ferodoxM.

This is the tag that you used in the FASTA file you submitted to ClustalW.

- Change the MODELLER modelling function that is used. Instead of 'full_homol', you

should call 'model'.

- Save the updated file.

10.Run the MODELLER script with cwMmodel.py. It should finish in about a minute. The

new model will be called 'ferodoxM', after the tag used in the new PIR file.

11.Send ferodoxM.B9990001.pdb to ERRAT and save the plot as ferodoxM.ps or

ferodoxM.jpg. Note which parts of the model have been improved due to the more accurate

alignment.

Finding better gap penalties

 Repeat the multiple sequence alignment and model generation that you did in the last

section, but use the following alignment parameters:

 BLOSUM matrix (unchanged).

 Gap Opening and End Gap = 3

 Extension and Separation = 0.05

 Remember to save this alignment as a PIR file under a new name, and add the extra tag

lines. You also need to modify your cwMmodel script so that it uses this new alignment file

rather than fdxCWM.pir, and include the following lines before the call to the 'model'

procedure.

 a.starting_model = 2

 a.ending_model = 2

9

 These statements set the first and last 'model number' for the generated models. By

default, modeller makes one model. If the variables above are defined, then modeller enters a

loop:
 i = a.starting_model
 do {
 generate a new distance geometry structure
 optimize the structure
 write the i'th model (as name.B(99990000 + i))
 i++
 } while (i < a.ending_model)

Adding more homologs to the multiple alignment

This section is optional:

The two template sequences are reasonably good homologs for the sequence that you are

modeling, but they are not the only ones that could be used. Open the file fdxfamily.fasta. You

will see some additional members of the feredoxin family.

1. Add the extra sequences to the sequences as input to ClustaW - and submit them to the

server using the same gap penalties as in the last section.

2. Save the new, wider multiple sequence alignment as fdxCWW.pir.

3. Examine the file fdxfamily.pir to find the tags and extra information fields needed to

complete the entries in your new alignment.

4. Modify your fdxCWM script again for this new alignment, and assign 3 to the

a.starting_model and a.ending_model.

5. Generate the new model and assess its quality.

Your Conclusions

Look at your results.

Were there any patterns?

Were good/bad regions associated with secondary structure, high/low sequence homology?

Did the results change much with different alignment parameters?

Please hand in a report within a week of semester finishing.

	1. Introduction
	2. What is MODELLER?
	3. Using MODELLER
	4. Measuring Model Quality
	5. Exercise: Modelling Ferredoxin
	 Making a better alignment
	Finding better gap penalties
	Adding more homologs to the multiple alignment
	Your Conclusions

