Markov Chains, substitution matrices, ..

Andrew Torda wintersemester 2007/08

- Aim : make the best possible alignments
- What is the philosophy underlying substitution matrices?
 - What do substitution matrices do? proteins
 - . . D A F A R A D C D M A . .
 - . . A D C F A G D Q R M A .
 - how similar
 - are C and A?
 - the **F** / **F** match?
 - this can be quantified
 - how important are alignments?

Importance of correct alignments

• As sequences:

. . D A F A R A D C D M A . .

. . A D C F A - G D Q R M A .

• In structural terms:

• moving one residue is 3.8 Å

- When else do we care?
 - you have a protein
 - vital to your chemistry
 - no idea about fold ...

What do we know from nucleotides?

- Typical nucleotide matrix
 - boring
 - no knowledge of specific mutations

	A	C	G	T
A	1	0	0	0
\mathbf{C}	0	1	0	0
G	0	0	1	0
T	0	0	0	1

- why is the idea obviously bad for proteins?
 - example
 - D (asp, small, acidic)
 - does it mutate to W (trp, large hydrophobic)?
 - does it mutate to E (glu, small, acidic)? yes
 - imagine ...
- what does a full matrix look like?

	D	Е	W	•••
D	10	5	-5	
E	5	10	-5	
W	-5	-5	15	
•••				

A serious protein similarity matrix

• blosum62:

F -2 -3 -3 -3 -2 -3 -3 -1 0 0 -3 0 6 -4 -2 -2 Y -2 -2 -2 -3 -2 -1 -2 -3 2 -1 -1 -2 -1

- some features
 - diagonal
 - similar
 - different

Model for mutation

- A series of evolutionary steps
 different protein sample
- xxxExxx
- xxxExxx
- $x \times x \times N \times x \times x$
- $x \times x \times N \times x \times x$
- $x \times x \times K \times x \times x$
- $x \times x \perp x \times x$
- xxxWxxx

- xxxExxx
- $X \times X \times L \times X \times X$
- $x \times x \perp x \times x$
- xxxWxxx

- a table that tells us about direct mutations
 - $A \rightarrow E$
- but also indirect
 - not $A \rightarrow S \rightarrow T \rightarrow A \rightarrow D \rightarrow E$
- other terminology.. Markov chains / matrices

Markov chains / matrices / nomenclature

- nomenclature
 - time *t*
 - a set of possible states E_1, E_2, E_3, \dots
- Markov chain
 - series of steps from E(t), $E(t+\delta t)$, $E(t+2\delta t)$, ...
- rule
 - state at $t+\delta t$ depends on now, t, not $t-\delta t$
 - no memory / inertia / history
- in state E_i now,
 - probability of being in state E_k at $t+\delta t$ is p_{jk}

Markov Chains

- From each state, system can move to another state with a certain probability p_{ik}
- my system may not disappear
 - at each step, my total population must remain the same

$$\mathbf{P} = \begin{bmatrix} p_{11} & p_{12} & \cdots & p_{1s} \\ p_{21} & p_{22} & \cdots & p_{2s} \\ \cdots & \cdots & \cdots \\ p_{s1} & p_{s2} & \cdots & p_{ss} \end{bmatrix}$$

A markov transition matrix?

- a simple / initial substitution matrix is a true transition probability matrix
- this places restrictions on relevant data
 - D \rightarrow E
 - not $D \rightarrow S \rightarrow T \rightarrow A \rightarrow D \rightarrow E$
- rows should sum to 1 $\sum_{j} p_{ij}$

Applying a matrix

• three types of amino acid E, D, W
• population E, D, W = 0.4, 0.4, 0.2
$$\mathbf{P} = \begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix}$$

at time $t+\delta t$

$$\begin{bmatrix} 0.6 & 0.3 & 0.1 \\ 0.3 & 0.6 & 0.1 \\ 0.1 & 0.1 & 0.8 \end{bmatrix} \begin{bmatrix} 0.4 \\ 0.4 \end{bmatrix} = \begin{bmatrix} 0.6 \times 0.4 + 0.3 \times 0.4 + 0.1 \times 0.2 \\ 0.3 \times 0.4 + 0.6 \times 0.4 + 0.1 \times 0.2 \\ 0.1 \times 0.4 + 0.1 \times 0.4 + 0.8 \times 0.2 \end{bmatrix}$$

Properties and definitions

• What happens if we have two steps? $\begin{vmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{vmatrix}$

$$\begin{bmatrix} 3/&1/\\4&/4\\1/&1/\\2&/2 \end{bmatrix}$$

$$\begin{bmatrix} 3/4 & 1/4 \\ 1/4 & 1/2 \end{bmatrix} \begin{bmatrix} 3/4 & 1/4 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 9/6 + 1/8 & 3/6 + 1/8 \\ 3/8 + 1/4 & 1/8 + 1/4 \end{bmatrix}$$
$$= \begin{bmatrix} 11/6 & 5/6 \\ 5/8 & 3/8 \end{bmatrix}$$

• the rows still sum to 1 $\sum p_{ij}$

Stationary Distribution

- Apply matrix multiplication infinitely
 - what would happen? (biological case aperiodic)
- Informal arguments
 - whatever you are (A, C, G, T or A, C, D, E, G, H... W, Y)
 - add up all the probabilities which lead to "A"
 - eventually the system will stop changing
 - can be argued (and solved) formally

Stationary Distribution

- argument similar to detailed balance
 - there is a set of probabilities for leaving state i, p_{ix}
 - a set of probabilities for entering state i, p_{xi}
 - a population in state i, π_i
 - the decrease in population depends on $p_{ix} \pi_i$
 - if π_i were big, $p_{ix}\pi_i$ is big
 - π_i decreases until $p_{ix} \pi_i = p_{xi} \pi_{(not i)}$
- nomenclature.. \mathbf{P}^n where $n \to \infty$
- biological sense?

Stationary Distribution

- biological sense
 - we survey all proteins and find gly = 5%, trp=2%, ...
 - this is the stationary distribution
- I start with one protein (not near stationary distribution)
 - it evolves forever becomes a pure random sequence
 - will not happen
 - for real proteins n (time / generations) is finite or
 - you die
- More properties of these processes

Broken Matrices

What if rows do not sum to one?

$$\mathbf{P} = \begin{vmatrix} 3/&1/\\4&/8\\1/&1/2 \end{vmatrix}$$

$$\begin{bmatrix} 3/4 & 1/8 \\ 1/4 & 1/8 \\ 1/2 & 1/2 \end{bmatrix} \begin{bmatrix} 3/4 & 1/8 \\ 1/2 & 1/2 \end{bmatrix} = \begin{bmatrix} 9/16 + 1/6 & 3/32 + 1/6 \\ 3/8 + 1/4 & 1/16 + 1/4 \end{bmatrix}$$
$$= \begin{bmatrix} 5/8 & 5/32 \\ 5/8 & 5/16 \end{bmatrix}$$

- the p_{ij} values will get smaller and smaller
 - the sequence will disappear
 - could have made a version which increases

Unlikely matrices

• rows all sum to 1

$$\mathbf{P} = \begin{bmatrix} 0 & 0 & 0.6 & 0.4 \\ 0 & 0 & 0.3 & 0.7 \\ 0.5 & 0.5 & 0 & 0 \\ 0.2 & 0.8 & 0 & 0 \end{bmatrix}$$

- if I am in state 1 or 2
 - will move to 3 or 4 (and vice versa)
- this is a periodic Markov matrix
- does not happen in sequences (or statistical mechanics (usually))
- we believe
 - transition matrices for sequences are "aperiodic"

Absorbing states

- I start in state i
- eventually reach state 2
 - cannot escape
- state 2 is an absorbing state
- what is stationary distribution?

$$\mathbf{P} = \begin{bmatrix} 0.2 & 0.3 & 0.25 & 0.25 \\ 0 & 1 & 0 & 0 \\ 0.3 & 0.1 & 0.1 & 0.5 \\ 0.2 & 0.3 & 0.2 & 0.3 \end{bmatrix}$$

Summary of properties

- rows sum to 1 $\sum_{j} p_{ij}$
- processes are not periodic
- there are no absorbing states
- infinite number of mutations either
 - does not occur or
 - you die
- DNA world: small 4×4 matrix
- proteins 20×20

Applications

- basis of calculating evolutionary distances
- philosophy of substitution matrices
- chemistry

Stationary distribution in chemistry

- who really invented Markov chains?
- stationary distribution? easy
- transition matrix
 - not uniquely determined
 - sometimes estimated (simulations)

$$\pi_i = \frac{e^{-\frac{E_i}{kT}}}{\sum_{j=0}^{N_{states}} e^{-\frac{E_j}{kT}}}$$

$$=rac{e^{-rac{E_{i}}{kT}}}{Z}$$

Applications / Summary

- chemistry / physics
- evolutionary models phylogeny
 - state (residue / base) now depends on previous generation
- substitution matrices

- **C**→**D** probability in one generation ? 100 generations ?
- Restrictions
 - periodicity / absorbing states
- Differences to sequence analysis people