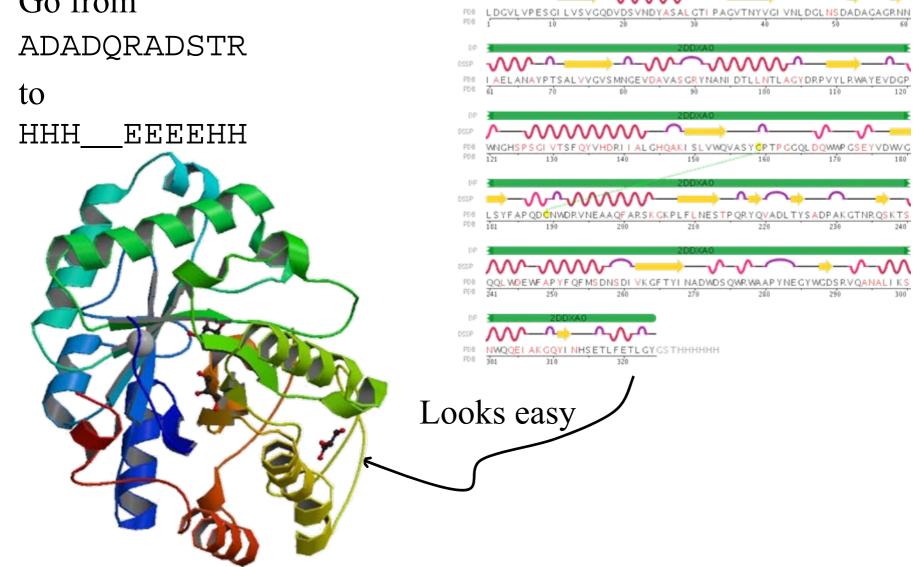
Secondary structure prediction

Andrew Torda, wintersemester 2008 / 2009, 00.904 Angewandte ...

Is secondary structure prediction really important?


• not if we could do full structure prediction reliably

Why worry?

Looks tempting...

The mission

- Go from

structure 2ddx 11/11/2008 [2

These lectures

- why do we care about secondary structure prediction?
- history
- definitions
 - secondary structure
 - prediction accuracy
- neural nets
- neural nets for secondary structure
- other approaches
- Does Prof Torda like
 - secondary structure prediction?
 - neural nets?

Who cares about secondary structure prediction?

- seems like an easier problem
- belief (1)
 - prediction of secondary structure
 - put these units together
 - easy protein structure prediction
- belief (2)
 - secondary structure forms first in protein folding
 - not proven not necessarily true
- real evidence of statistical trends
- huge history
- very very popular in biological labs
- techniques might be applicable to other problems
 - predicting
 - solvent accessibility, coils, membrane bound

Why should secondary structure be predictable?

There are statistical preferences

- obvious
 - alanine likes helices
 - proline does not like helices (no H-bond donor)
- less obvious
 - β-strands more likely to be buried
 - α-helices amphipathic
 - residues have preferences (hydrophobic, polar, charged..)
 - would expect predictable patterns

Hamburg Gesetze

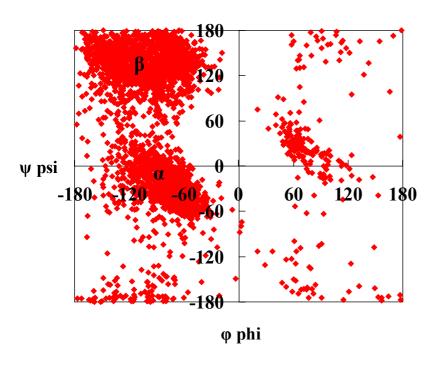
Conventions – different names and types of secondary structure

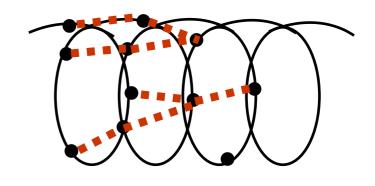
detailed	condensed			
Н	Н	α-helix	most important	
E	E	β-strand		
В	E	β-bridge		
G	Н	3-10 helix		
I		5 helix		
T	other / L / coil/	H bonded turn		
S	CO11/	bend		

We will mostly stick to H, E, other (coil)

A Trottelvorhersage

- take set of representative proteins
- assign secondary structure
- count number of times residue occurs in each type

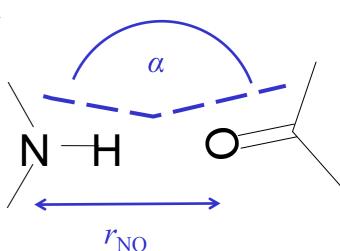

A better predictor


- You cannot have an α -helix of one residue
 - physically > 4 residues, usually more
 - EEE___HEE not possible
 - β -strands normally longer as well
- Chou and Fasman (1978)
 - look for stretches of 6 likely "H"
 - 5 likely "E" (β-strand)
- About 50-60 % correct

Defining secondary structure

Before going on, need some definitions How rigorous is secondary structure?

• defined by geometry or H-bonds?



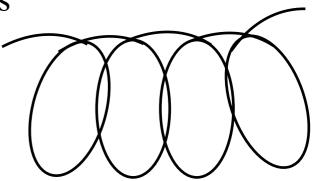
Maybe H-bonds are a bit better

How well is an H-bond defined?

- H-bond is "in principle" well defined but
 - proteins have errors / are an average
 - not all geometry is ideal
 - not all H-bonds are the same
- Consequence
 - slight arbitrary element
 - how big is r_{NO} ?
 - how flat is α ?
- Different programs might differ
 - about H-bonds
 - about exact secondary structure

Different definitions of secondary structure

Assignments will differ between programs


most differences at ends

Where will you meet this?

- spdbv, rasmol, chimera...
- many programs for protein analysis

Most important?

- DSSP (Kabsch and Sander)
 - pascal -> C (astonishingly ugly, grässlich, nicht robust)
 - free code, popular
- defines 8 types of secondary structure
- based on H-bond definition
- well described in paper

Measuring prediction accuracy Q3

- how many α -helical residues are correct?
 - number of correct α -helix/number really α -helical

$$Q_{\alpha} = \frac{number\ residues\ correctly\ predicted\ as\ \alpha}{number\ residues\ observed\ as\ \alpha}$$

more generally

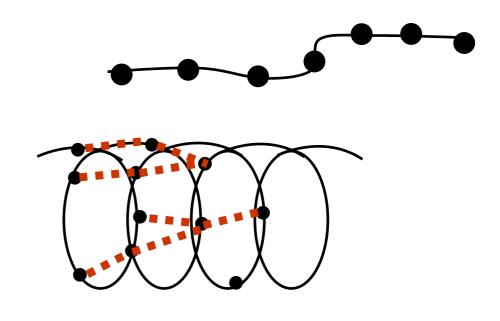
$$Q_3 = \frac{number\ residues\ correctly\ predicted}{number\ residues}$$

What is wrong with Q_3 ?

Not bad but

EEEHEEEEE is a bit silly

Does not tell us about


- predicting
 - too much / too little
- different types of errors

Alternatives

segment based (SOV)

- truth table
 - too hard

Generally use Q_3

		predicted		
		Н	Е	С
observed	Н			
	Е			
	С			

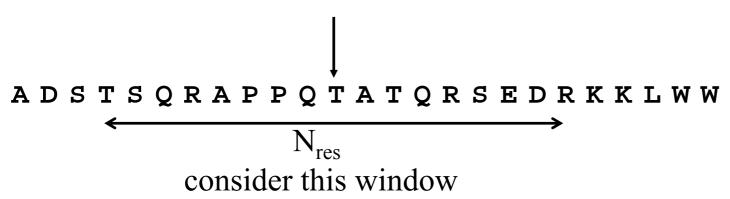
Baselines / Expectations

Proteins are

- 32 % α helix
- 21 % β strand/sheet
- 47 % others

Random guesses

• about Q₃ 36 or 38 % correct


Approaches and history

Approaches / formulations

- statistics
 - most likely conformation of
 - an amino acid
 - a few amino acids
- information measures
 - how much does each position matter?
 - how significant is an amino acid at some position?
- rules
 - A followed by C three positions .. or a ...
 - automatic rule detection

General philosophy

to predict this residue

Predict the conformation (H/E/?) of a residue based on his neighbours

- slide window along sequence
- N_{res} might be from 5 to 17

Garnier Osguthorpe Robier

Earliest somewhat successful approach

- Q₃ about 55 to 60 %
- N_{res} (window) = 17

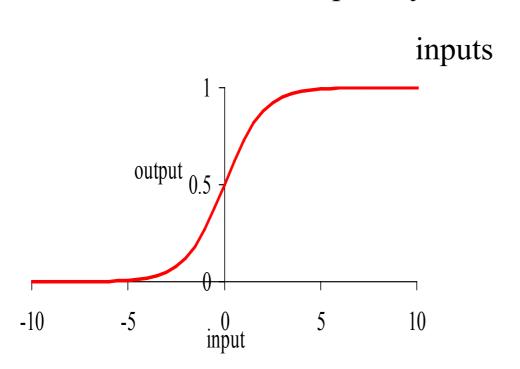
Simplest approach

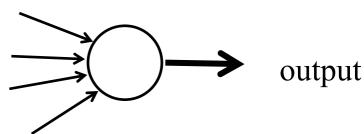
- look at residues in each conformation (α, β) in many proteins
 - make tables
 - not just which residues are present
 - which residues are most significant
- One side information theory
- Others
 - log-odds probabilities

Why neural nets?

There are statistical tendencies for amino acids to sec. struct We expect some rules -examples

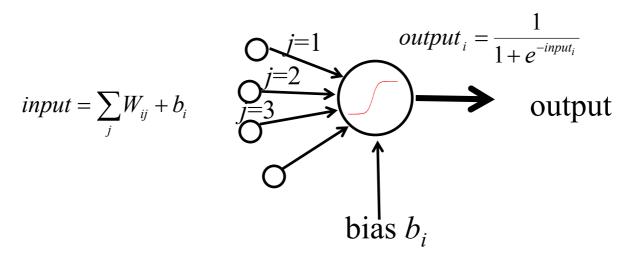
- residues near centre are important
- patterns?
 - maybe if every fourth residue has some property = helix
 - alternating residues = β ?
- Simple neural nets are one way to pick up rules


Neural nets...

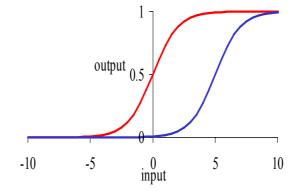

Many kinds

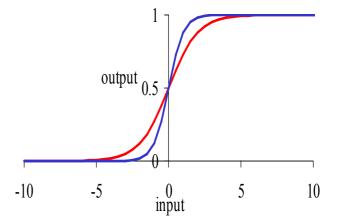
• soft computing lectures (Prof Stiehl)

Ours


- "feed forward / backwards propagation"
- one unit
 - switches off and on quickly

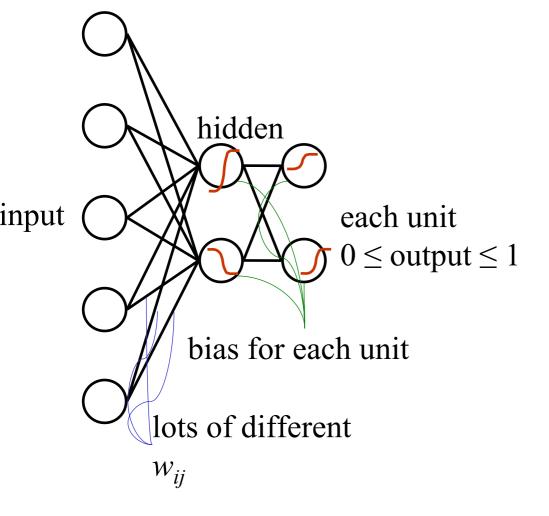
One unit of a net


- one unit sums up inputs and makes a decision (on / off)
- summing


what can we do to make it more interesting?

Weights and biases

bias moves left and right



- our w's make the curve sharp or flat
- a single unit may
 - respond quickly, slowly
 - be sensitive to some inputs
 - not care about others

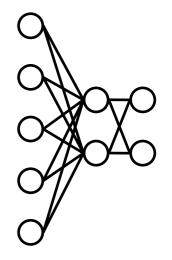
bias übersetzung drama! Abneigung? not here...

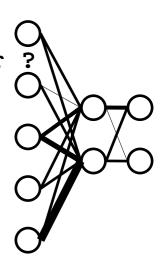
A full neural net

- lots of weights
- lots of biases
- some "excitors","inhibitors"
- should be possible to get some quite arbitrary output
- like coding up rules

What can one do?

- get input into some reasonable form
 - set of 0's and 1's (good)
 - set of numbers in some controlled range
- very general mapping of input to some output
- how to get weights and biases?
 - training


Training a net


- collect data
 - input data + matching output
- random weights and biases

```
while (not happy)
  show next pattern
  calculate output
  for each output node
     calculate (desired - observed)
     should we make a weight bigger or smaller
     small adjustment of weights
```

Over time

- weights and biases move up, down...
- hopefully becoming better

Neural Nets for secondary structure prediction

- input pattern
 - our central residue + neighbours ADADFWADER
- output
 - measured secondary structure HHH___EEEEH

dimensions

- at least $N_{res} \times 20$ input nodes
- handful of hidden units
- about 3 output units

Earliest neural nets for secondary structure

- windows typically $13 \le N_{res} \le 19$
- hidden layer 5 < N nodes < 100
- output about 3 nodes

Success

- about Q_3 50 to 60 %
- Is this OK?
 - not enough to build structures
- Q_{β} usually worse
- not much use

Where next? Big change

Use of alignments

- consider one sequence and related neighbours
- and align
- get out average residue at each position
- Instead of binary (0 / 1) inputs, use the average A D D Q R A A S S K at each position I D D Q R A D S T R
 - 4/7 Leu, 1/7 Val, 1/7 Ile, 1/7 Ala.
- why is this good ?
 - look at unusual "A" in row 2
 - is it significant?
 - profiles average over weirdness
- averaging obvious, but there is more information

LDDQRASTR
LDDQRADSTR
VDDQRAWSTR
ADDQRAASSK
IDDQRADSTR
LDDQRAGSTK
LDDQRAGSTK

More information from alignments

- Alignment tells us
 - what is average residue type
 - how much does the residue vary
 - degree conservation
- Why should it matter?
- Dogma
 - most mutations are bad, some very bad
 - buried regions are conserved
 - secondary structure is conserved
 - simple conservation is important
- Noise argument
 - predictions have random errors
 - think random errors, drunk walks

```
L D D Q R A S T R
L D A Q R A D S T R
V D D Q R A W S T R
A D D Q R A A S S K
I D D Q R A D S T R
L D D Q R A C S T R
```

More information for each site

- 20 residues (0.0 to 1.0) x N_{res}
- deletion could be like a 21st residue
- how conserved is the central site? (turn into a value 0 to 1)
- the other sites ? (turn into a value 0 to 1)
- now 22 inputs per site in window
- how to handle ends?
 - add another kind of residue

Information for whole window

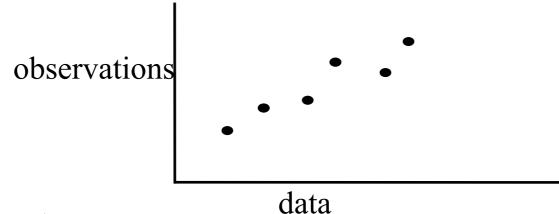
- overall composition (20 nodes ?)
- length of chain (small proteins are weird)

State of the art predictors

- Success?
 - 72 to 77 %
 - β -strand no worse than α -helix (earlier a problem)
- all use sequence profiles
- somehow include preference for intact segments (H is more likely next to H)
 - extra layers / nets
- measures of reliability
- Why this success?
- neural nets have NOT improved
 - experience with training and details
- profiles, multiple sequences
- database growth

Warum sind neural nets hässlich?

Can I see what has happened?


• can I work out the rules that turn on the α -helix unit?

Number of variables

- weights + biases
 - typical 1000 to 50 000
- how many do I need?
- are the extras harmless?
 - recall vs. generalisation
 - too many connections
 - "fitting to noise"

Fitting to noise

• what is the best explanation of data?

- red line fits data best
- black line is underlying model
- details are noise
- red line does not generalise
 observations

data

- best model
 - represents underlying behaviour
 - fewest parameters

Other learning / classifying procedures

- Belief and aim
 - secondary structure is a property of a residue and its neighbours
 - any procedure which maps

ADADQRADSTR

HHH EEEEHH

- any idea from
 - statistics
 - pattern discovery
 - classification
 - decision tree construction
 - hidden Markov models
 - support vector machines...

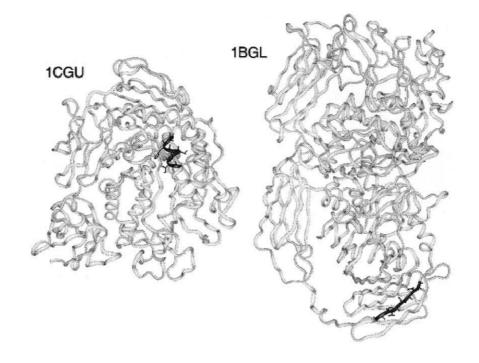
Limits

Regardless of method

- If we have coordinates, no consensus as to secondary structure!
 - limit could be 88 %

All current methods limited to common proteins

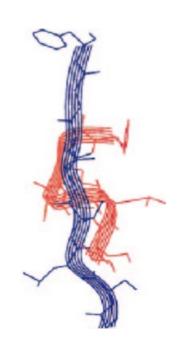
• best on soluble, globular proteins

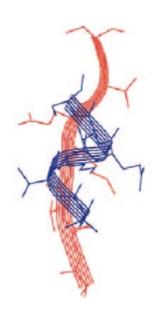

Real limit lower

- trying to predict conformation from local properties
- is is really a local property?
- would you expect a pentamer defines local structure?

(these are kind of things I like for exam questions)

Pentamers in different conformations

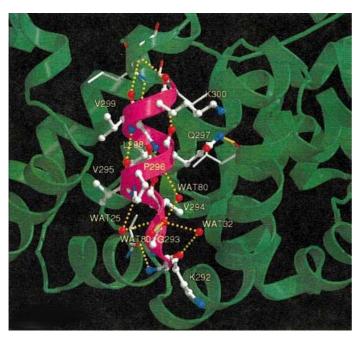

- can one really hope to predict secondary structure based on sequence?
- first examples
 - search PDB and look at 5-mers (pentamers)
 - often same sequence in different conformation
- later 7-mers



even worse

• 8-mer pair, 1pht and 1wbc

7-mer pair, 1amp and 1gky



from Sudarsanam, S, Proteins 30, 228-231 (1998), "... identical octapeptides can have different conformations"

even worse

• 9-mer

1ial

V420 V416 P417 V415 G414 K413

1pky

• sequence KGVVPQLVK from two proteins

Minor and Kim (much worse)

- Take IgG-binding domain of protein G
 - write down an 11-mer
 - insert in one place
 - forms α -helix
 - insert in another
 - forms β -strand

A conclusion

- Secondary structure is largely determined by local effects
 - secondary structure is very influenced by context / environment

Minor Jr, DL & Kim PS Nature, 380, 730-732 (1996) Context-dependent secondary structure formation of a designed protein sequence

Why spend all this time on neural nets?

- Neural nets are most popular approach
 - secondary structure can be used towards full structure
- Underlying physics not well known
 - number of parameters totally empirical
- Lots of literature on neural nets
- Methods more generally applicable
 - rules might exist
 - not well understood / not well known
 - can we recognise a membrane bound piece of sequence ?
 - maybe it is a hydrophobic core
 - can we recognise sites for chemical modification
 - phosphorylation, acetylation, glycosylation...?
- Neural nets could be useful for these