Analysis, Comparison of Proteins

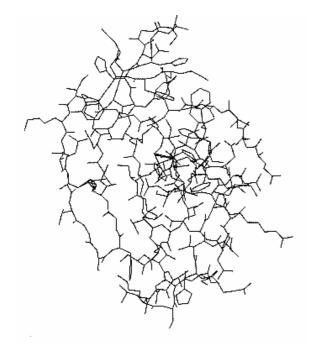
Andrew Torda, wintersemester 2008 / 2009, GST

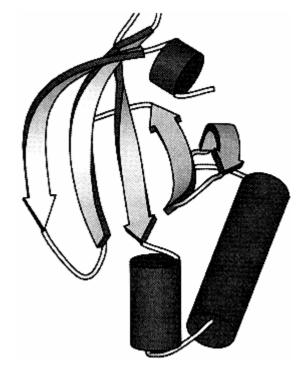
From previous lectures

- we know about protein structures / coordinates
- we know how coordinates are collected

What kind of analysis would we like to do?

- recognising common features
- classifying
 - (useful for prediction)


Philosophy


- ways to measure similarity between structures
- ways to find similar pieces / "motif"s
- most common motif ? Secondary structures

Next few weeks

- Secondary structure definitions
- Classifying protein structures
- Domains
- Supersecondary structure
- Protein similarity sequence versus structure
- Sequence space
- Classifications hierarchical
- Classifications other
- Comparison of proteins
- touching on evolution, alignments, ...

Secondary Structure Recognition

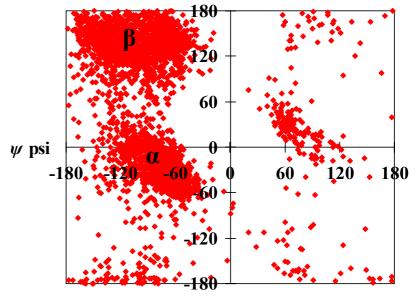
from coordinates

assumes structures recognised

• how to define / recognise secondary structure ?

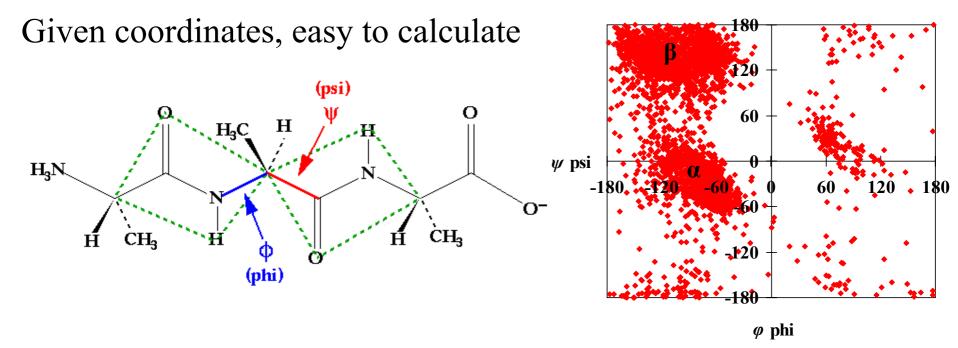
Defining Secondary Structure

• What do I want ?

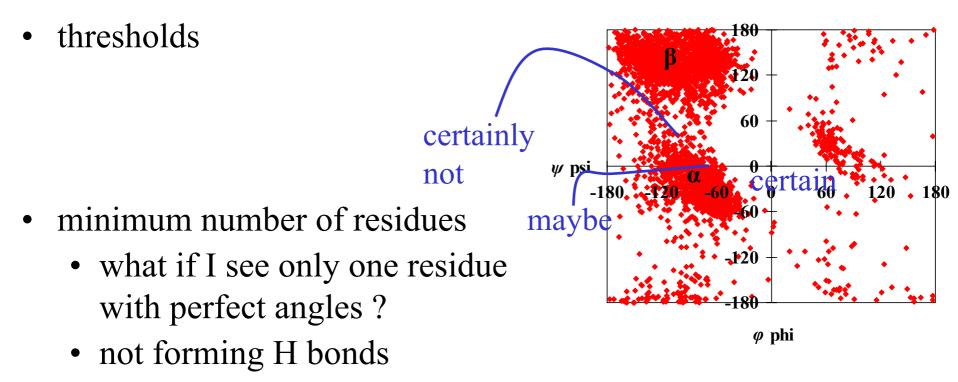

	1	2	3	4	5	6	7	8	9	10	•••
residue	А	C	A	D	L	V	А	W	W	А	•••
sec	-	Н	Н	Н	Н	Η	-	E	E	E	•••
struct											

- at each residue, label as to secondary structure type
 - no ambiguity
 - labels at residues not between !
- I do not want probabilistic answers (more soon)
- remember not all residues are in recognisable α -helix or β -sheet

Secondary Structure From Coordinates


Start with α -helices

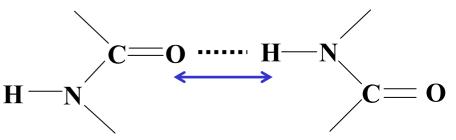
- what do we know
 - look like helices
 - 3.6 residues per turn
 - H-bond pattern
 - N residue *i* to *i*+4
 - residue backbone angles


Using Backbone Angles

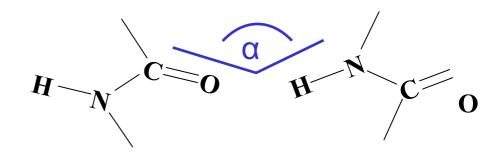
Problems

- what are my thresholds ?
- what if I see one residue with angle ?

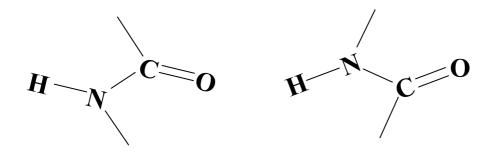
Problems With Using Angles



• need 3 or 4 residues

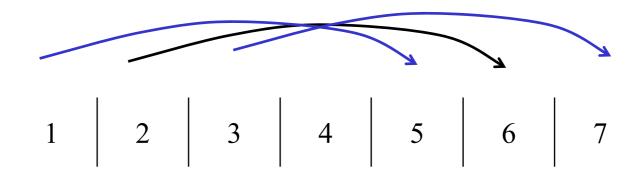

Maybe We Should Use H-Bonds

We have the coordinates


- should be easy to recognise all H bonds
- criteria ?
- distance $r(ON) < \approx 3.6 \text{ Å}$

• angle ? ($\approx 120^{\circ}$)

A practical definition


$$E = 332 q_1 q_2 \left(\frac{1}{r_{\text{ON}}} + \frac{1}{r_{\text{CH}}} - \frac{1}{r_{\text{OH}}} - \frac{1}{r_{\text{CN}}} \right)$$

- require E < -3 (arbitrary !)
- note as *r* grows, *E* goes to 0

Problems with short helices

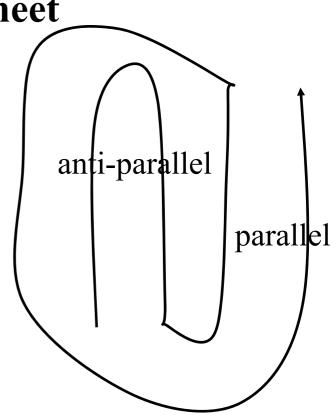
What if I see only 3 or 4 residues ?

- real helix has 2 H-bonds per residue
- what if I see one ?

Compromise

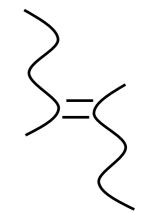
- call this a turn (only has one H bond)
- *a*-helix definition
 - at least two consecutive (4 residue) turns

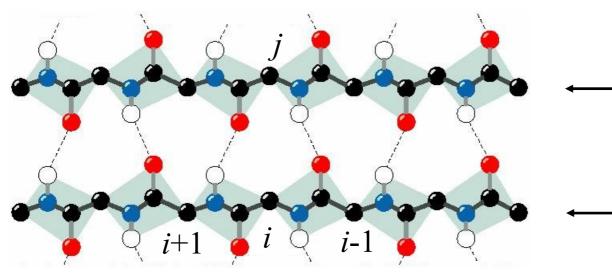
Useful definitions (α-helix)


- recognise an H-bond *i*,*i*+4 (either
 - $r_{\rm ON}$ + angle α or
 - general distance formula
 - = turn
- two successive turns
 - = minimal *a*-helix
- more overlapping helices
 = longer helix
- all we have done is an α -helix

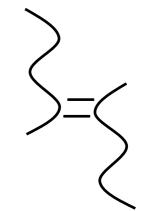
a β -strand / sheet

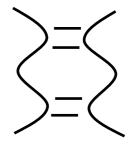
- much more difficult
 - parallel versus anti-parallel
 - H-bond neighbours not known
 - 5-109
 - 6-110
 - 7-111 ... parallel


or


- 5-109
- 6-108
- 7-107...anti-parallel
- formalise this

Defining a β -sheet


- start with a bridge
- parallel bridge
 - H-bond (*i*-1, *j*) & H-bond (*j*, *i*+1) or
 - H-bond (*j*-1, *i*) & H-bond (*i*, *j*+1)



Defining a β -sheet

- start with a bridge
- parallel bridge
 - H-bond (*i*-1, *j*) & H-bond (*j*, *i*+1) or
 - H-bond (*j*-1, *i*) & H-bond (*i*, *j*+1)

- ladder = one or more consecutive bridges
- sheet = one or more consecutive ladders with shared residues
- similar definition for anti-parallel sheets

Are these problems real?

Do thresholds matter ?

- do programs give the same answer ?
- if we use secondary structure for comparisons of proteins
- comparisons with experiment

Can we set perfect thresholds ?

- not all H-bonds are the same
- look at ψ - φ map, borders are not clear
 - mobility, finite energy
- coordinates have experimental error
- our programs generate worse coordinates (holes, distortions)

From secondary to higher levels Classification

- Why classify proteins ?
- Why recognise similarities
 - function prediction
 - structure prediction
 - vague idea of structure for mutagenesis, applications
- Why might this be useful ?
 - how many structures are there ?

How Many Protein Structures Are There ?

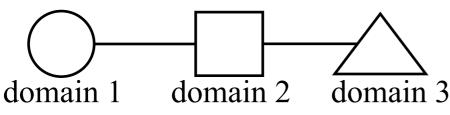
- Protein Databank $\approx 5.5 \times 10^4$
- 90 % sequence similarity $\approx 1.7 \times 10^4$
- different shapes 2 to 5×10^3
- implications for structure prediction ?
 - how many possible structures can we think of ?
 - exponential
 - how big is the real search space ?
 - really 10^3 to 10^4

Why So Few Structures

- discretization of space (makes it look smaller)
- physical reasons
 - compactness, stability
 - advantages of H-bonded conformations
- history / evolution
 - imagine all proteins evolve from some original molecule
 - evidence
 - theoretical geometric constructions
 - chemical construction of artificial protein(s)

Before Classifying

- earlier description of structure
- primary (sequence)
- secondary (α -helices, β -sheets, ...)
 - supersecondary ?
- tertiary
 - arrangement of helices / sheets or
 - where atoms are in space
- quaternary...
- we need idea of domains, then supersecondary structures

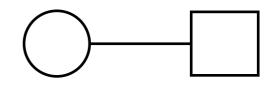

Domains in Biochemistry

History / biochemistry / no structures

- invented story
- we have a big protein
 - catalyses $A \rightarrow B$
 - C regulates it
- cleave protein (break with enzyme) to two parts
 - 1 still converts $A \rightarrow B$
 - 2 binds C
 - interpretation
 - catalytic domain
 - C binding domain
- more generally
 - different pieces of protein, responsible for different functions

Domain Concept Useful ?

- Many times a whole protein cannot be crystallised, solved by NMR
- attack protein with enzymes to break up
- look for activity in pieces, solve structures of pieces


each domain 50 to 250 residues

- literature / PDB full of "xxx domain of yyy"
- attractive ?
 - makes big proteins seem manageable
 - building block concept
 - attractive in evolutionary terms

Domains in Structures

- Many structures solved look like...
- histocompatibility module (liak)
 - 3 domains + another protein
- are they always so clear ?
- porphobilinogen deaminase (1gtk)

Domain definition version 3

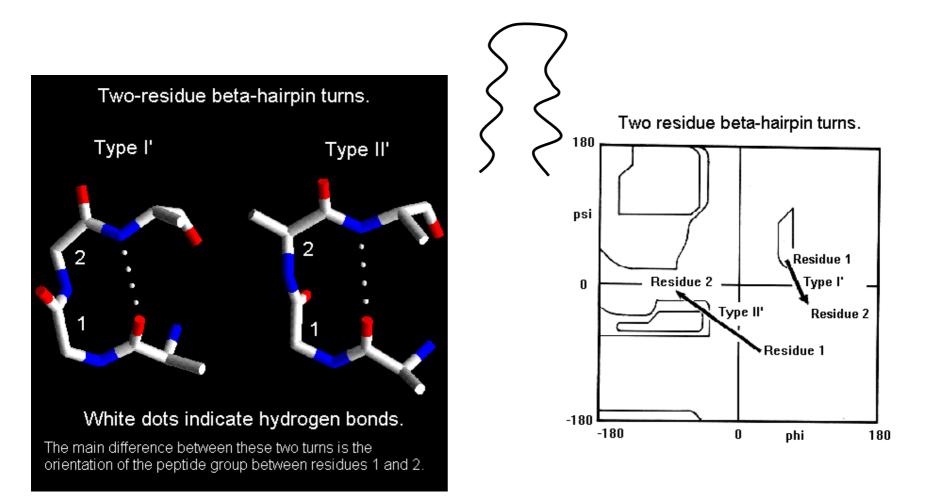
Three reasonable definitions

- biochemistry
- structures
- look for conserved units in sequence comparisons

Domains for today

• compact structural units

Domains for classification


• structural classifications often domain based

Classifications In General

- 1. secondary structure
 - we see collections of residues and classify into recognisable types
- 2. different types of domain
 - soon
- 1b. supersecondary elements ?
 - are there some common small arrangements of *α*-helices, β-sheets ?

A Supersecondary Structure

- β -hairpin (β -turn- β) fits idea of common motif
 - described as built on secondary structure + specific H-bonds

More Supersecondary Structures

- helix-turn-helix (*a*-X-*a*)
 - DNA binding proteins
- helix-longer_loop-helix
 - Ca⁺⁺ binding

Who cares ?

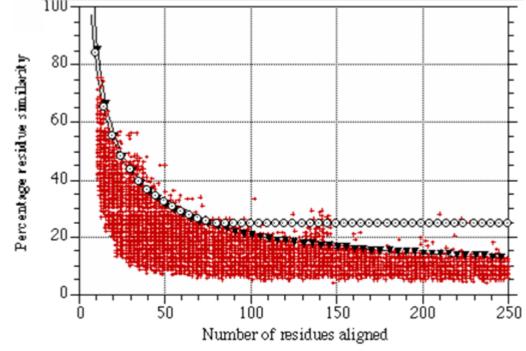
- repeated patterns / motifs suggests there are smaller number of structural units to recognise
- modularity appeals
- functional association
- conforms to some ideas on protein folding (more next semester)

Why I Do Not Like Supersecondary Structure

- ideal picture...
 - primary structure arrangement \rightarrow
 - secondary structure / arrangement \rightarrow
 - supersecondary structure \rightarrow
 - tertiary structure or domains
- implies supersecondary structure is useful hierarchical element
 - not really used !

Sequence vs Structural Similarity

Background


- in the real world we usually have sequence information first
- want to make guesses about protein structure
- I have two aligned protein sequences
- are they structurally similar ?Old rule
- > 25 % sequence similar similar structures
- < 20 % cannot tell
- 20 % < x < 25 % "twilight zone"

Is this universally valid?

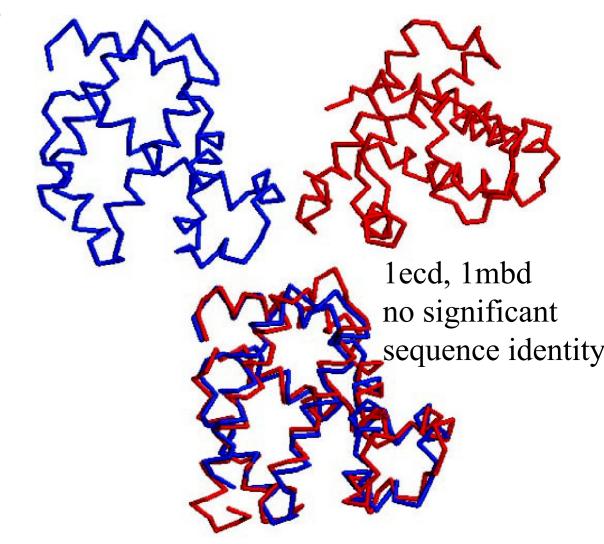
Sequence Similarity → **Structure**

Take a set of pairs of proteins

- find those which are not structurally similar
- look at sequence similarity
- old rule is not valid
- 50 residues
 - > 30 % seq
- 150 residues
 - > 20 %

- rule:
 - sequence similarity (length dependent) very good indicator of structural similarity

Using Sequence Similarity


- consequence
 - I could try to categorise proteins based on sequence
- tools
 - any alignment program (blast, fasta, clustal, ...)
- method
 - survey all proteins in the protein databank
 - collect all pairs > x % (or use more sophisticated threshold)

•	$m_{2} = 11 (i_{2} = 2000)$	similarity	num clusters		
	result (jan 2009)	90 %	20 002		
		70%	17 490		
•	much more than 2 to 5×10^3 ?	50%	14 906		

• maybe some of my classes are not really different

Sequences Not Similar

- Sequences similar ? .. similar structure
- Sequences different ?
 - ??
- Example
 - 100's examples

An Example Family

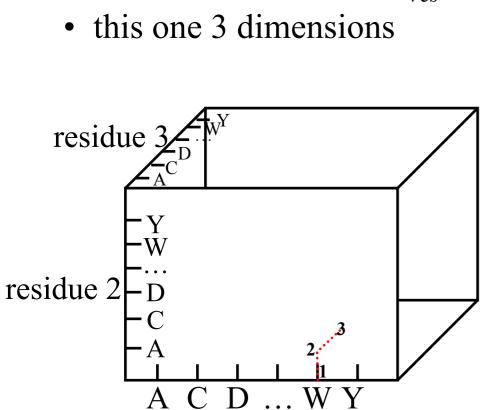
- example, neighbours of 1cun chain A
 - look at sequence identity (%id)
 - alignment length (lali = number of residues)
 - root mean square diff in Å

No	Chain	%id	lali	rmsd	Description
1	1cunA	100	213	0.0	ALPHA SPECTRIN
2	1hciA	24	111	1.6	ALPHA-ACTININ 2
3	1ek8A	12	106	4.4	RIBOSOME RECYCLING FACTOR
4	1oxzA	9	91	2.5	ADP-RIBOSYLATION FACTOR BINDING PROTEIN GGA1
5	1eh1A	8	102	4.6	RIBOSOME RECYCLING FACTOR
6	1hx1B	5	105	3.1	HEAT SHOCK COGNATE 71 KDA
7	1dd5A	8	103	4.7	RIBOSOME RECYCLING FACTOR
8	1lvfA	9	98	2.6	SYNTAXIN 6
9	1bg1A	9	99	2.3	STAT3B
10	1hg5A	5	98	3.0	CLATHRIN ASSEMBLY PROTEIN SHORT FORM
11	1hs7A	14	92	2.5	SYNTAXIN VAM3
12	1dn1B	10	101	2.7	SYNTAXIN BINDING PROTEIN 1
13	1ge9A	6	108	4.6	RIBOSOME RECYCLING FACTOR
14	lfewA	8	125	3.5	SECOND MITOCHONDRIA-DERIVED ACTIVATOR OF
15	1qsdA	4	90	2.4	BETA-TUBULIN BINDING POST-CHAPERONIN COFACTOR
16	1e2aA	6	95	2.8	ENZYME IIA
17	1i1iP	7	95	3.3	NEUROLYSIN
18	1fioA	8	100	2.6	SSO1 PROTEIN
19	1m62A	8	81	2.8	BAG-FAMILY MOLECULAR CHAPERONE REGULATOR-4
20	1k4tA	6	147	25.8	DNA T (http://ekhidna.biocenter.helsinki.fi/dali/start

DIVERSION Sequence Space

- convenient way to explain ideas of sequence similarity
- conventional spaces
 - 1D (x), 2D (x, y), 3D (x, y, z), 4D (x, y, z, w), ...
 - let us estimate how big a space or problem is
 - how many variables do I have ? (a, b, c, ...)
 - how many values can each variable have ?
 - a 3 values, b 4 values, c 5
 - number of points in space = $3 \times 4 \times 5$
- protein sequences
 - each position can have 1 of 20 values
 - total number of sequences = $20 \times 20 \times ... = 20^{Nres}$
 - like a space of N_{res} dimensions

Representing a Sequence

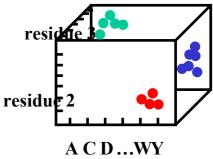

• protein sequence and structural coordinates

	1	2	3	4	5	6	7	•••	N _{res}
X	1.2	2.3	• • •						10.3
У	2.4	3.5	• • •						11.1
Ζ	1.7	2.9	• • •						15.5
seq	W	Α	С	А	А	•••			D

- consider the first three residues
 - WAC (for pictures only)

Finding a Sequence in This Space

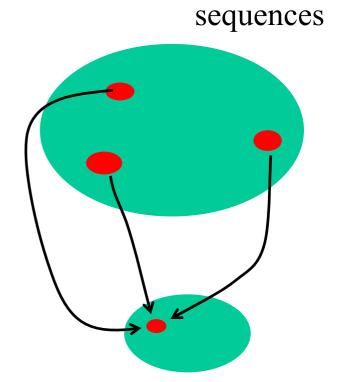
• real diagram is a box of N_{res} dimensions


residue 1

seq	W	А	С	Α	Α	•••			D
Z	1.7	2.9	•••						15.5
у	2.4	3.5	•••						11.1
X	1.2	2.3	•••						10.3
	1	2	3	4	5	6	7	•••	N _{res}

• looking for sequences...

Families in Sequence Space


- Similar sequences should land near each other
- How realistic ?
 - picture is a simplification
 - only works for $N_{seq1} = N_{seq2}$
 - very useful
 - distances between sequences
- Will return next semester

residue 1

Structure vs Sequence

- there are 1000's of such families
- summarise
 - similar sequences
 - similar structures
 - very different sequences
 - similar or different structures
- why ?

structures

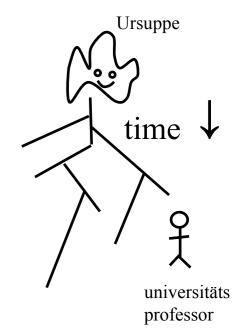
Structures < Sequences... Why ?

Evolution 1

- many small changes
- if structure changes, function breaks, you die
- sequences change as much as possible within this constraint

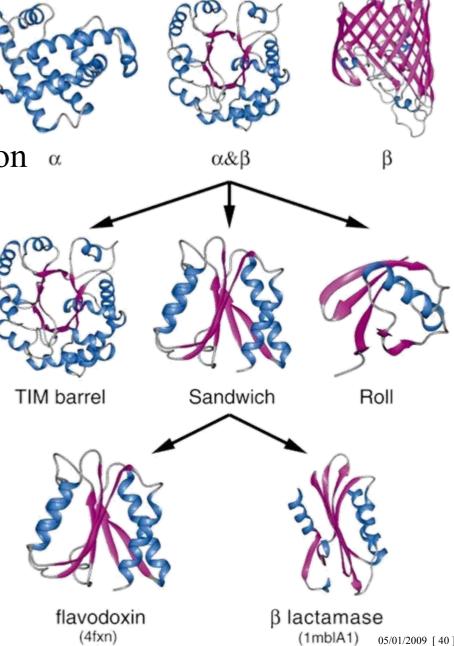
Evolution 2

- maybe some cases of convergent evolution
- impossible to prove

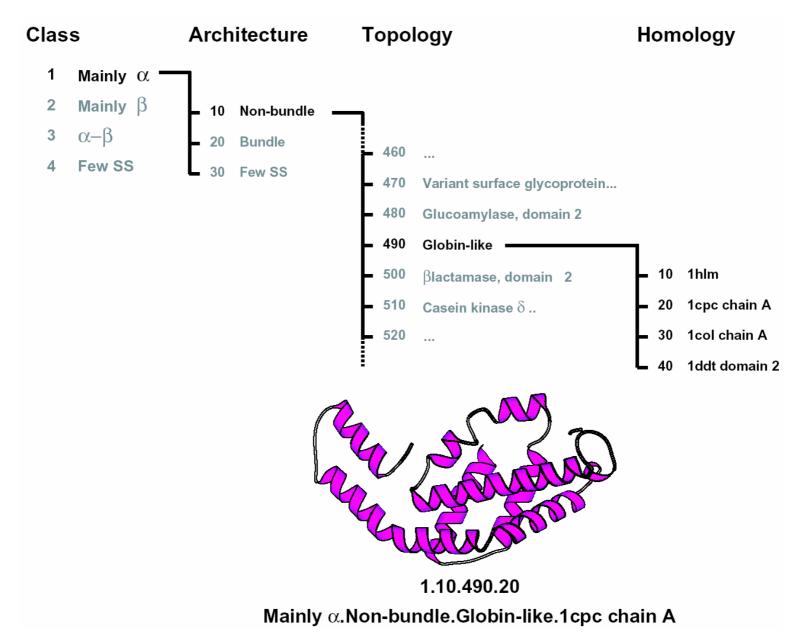

Consequences of sequence based categorisation

- we will have different classes, but really same protein shape Surprising ?
- consider near universal proteins
 - 100's millions years evolution, function largely preserved
- chemistry
 - sequence does determine structure, many sequences could fit structure

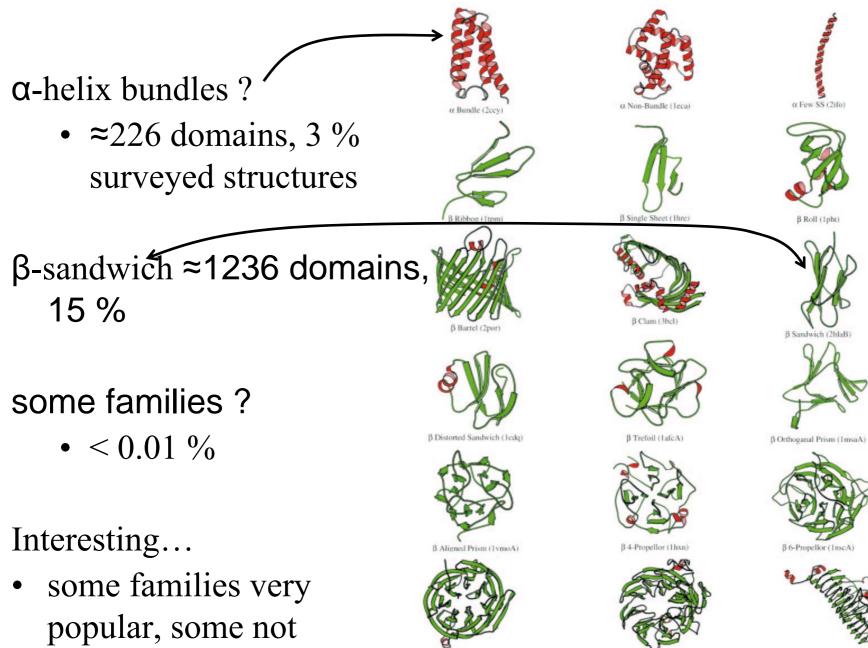
Back to Classification


Sequence classification

- good, reliable, similar class = similar structure
- not enough to find all similarities
- need for structure based methods
- Philosophies
- 1. evolution
- 2. just classify proteins Evolution
- diagram \rightarrow
- we expect a hierarchy



Imposing a Hierarchy on Proteins


- parts may correspond to evolution α
- top level ?
- How useful and applicable ?
 - examples

Example from "CATH"

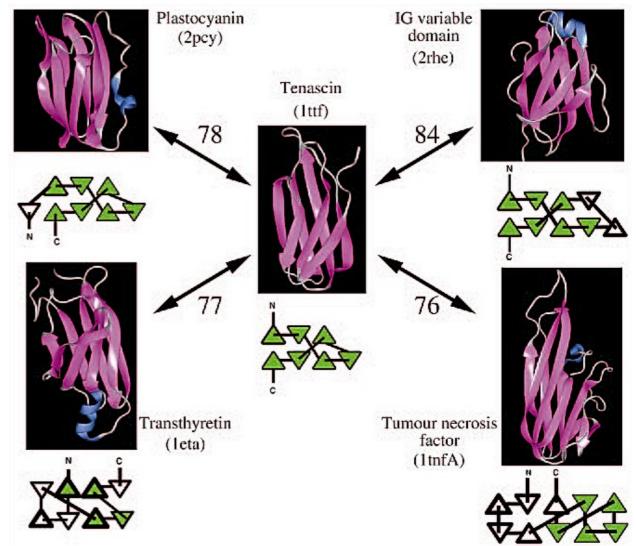
Lots of families

CA Orengo AD Michie, S Jones, DT Jones, MB Swindells, JM Thornton, Structure, 1997, 5,1093-1108 7 Propellor (2bbkH)

β 8 Propellor (3aahA)

β 2 Solenoid (1tsp)

Why are some families populated more than others ?


- more next semester
- are some structures more stable ?
- are some older in evolutionary terms ?
- can some "accommodate" more sequences / tolerate more mutations
- is this a reflection of physics ?
- no PDB is very biased
 - mainly soluble, globular proteins which crystallised
 - very few membrane-bound proteins

Supersecondary Motifs

- members of a given family probably have common supersecondary motifs.
 - helpful ?
 - not all proteins can be generated as a collection of motifs
- can we interpret in terms of evolution ?
 - sometimes

Evolution and Classification

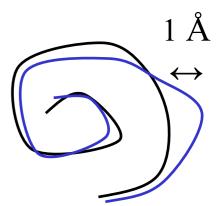
- for very similar proteins, easy
- more remote ?
 - maybe

05/01/2009 [45

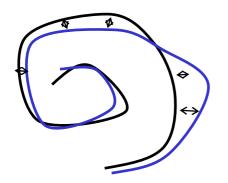
CA Orengo AD Michie, S Jones, DT Jones, MB Swindells, JM Thornton, Structure, 1997, 5,1093-1108

Forget Evolution

- Is the hierarchy really justified ?
 - at low levels maybe
 - at higher levels ? $(\alpha, \alpha / \beta, ..)$
- better to discover relationships automatically
- Imagine I can compare arbitrary proteins
- have some measure of similarity
- use this to classify
- Huge problem
 - proteins are different sizes and shapes
 - how to compare ?


Protein Structure Comparison / Numerical

Most common protein structural question


- how much has my protein moved over a simulation ?
- how similar are these NMR models for a structure ?
- how close is my model to the correct answer ?
- more difficult
 - how similar is rat to human haemoglobin ?
- two cases
 - 1. same protein, same number of atoms
 - 2. different proteins
- first
 - measures for easy cases

Numerical Comparison of Structures - Easy

- what units would we like?
 - scale of similarity (0 to 1.0)?
 - comparison of angles

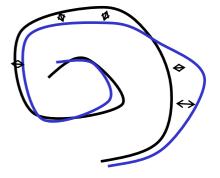
- distance / Å ? most common / easy to interpret
- looks a bit like the average difference between coordinates
- consider analogy with standard deviation / variance

From Standard Deviation to RMSD

Analogy with comparing a set of numbers

- get average (mean) $\overline{x} = N^{-1} \sum_{i=1}^{N} x_i$
- variance and standard deviation, σ
- apply this to coordinates of r and r'1 /

$$RMSD = \left(N^{-1} \sum_{i=1}^{N} \left| \vec{r_i} - \vec{r_i'} \right|^2 \right)^{\frac{1}{2}}$$


- formula above, names below ullet
- rms = rmsd = RMSD = root mean square difference Applying this...

$$\sigma^2 = N^{-1} \sum_{i=1}^N (x_i - \overline{x})^2$$

$$\sigma = \left(N^{-1} \sum_{i=1}^{N} (x_i - \overline{x})^2 \right)^{\frac{1}{2}}$$

Calculating rmsd

$$RMSD = \left(N^{-1} \sum_{i=1}^{N} \left| \vec{r}_{i} - \vec{r}_{i}' \right|^{2} \right)^{\frac{1}{2}}$$

- start at one end
- difference between pairs of atoms

$$\left|\vec{r}_{i} - \vec{r}_{i}'\right|^{2} = (x_{i} - x_{i}')^{2} + (y_{i} - y_{i}')^{2} + (z_{i} - z_{i}')^{2}$$

- huge problem..
 - coordinates are normally...
- what to do ?

Translation and Rotation

translation

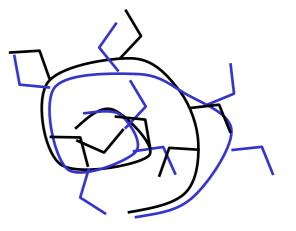
• c.o.m. = centre of mass

$$\vec{r}^{c.o.m} = \left(\sum_{i=1}^{N} m_i\right)^{-1} \sum_{i=1}^{N} \vec{r}_i m_i$$

$$\vec{r}_{diff} = \vec{r}^{c.o.m.} - \vec{r}'^{c.o.m.}$$

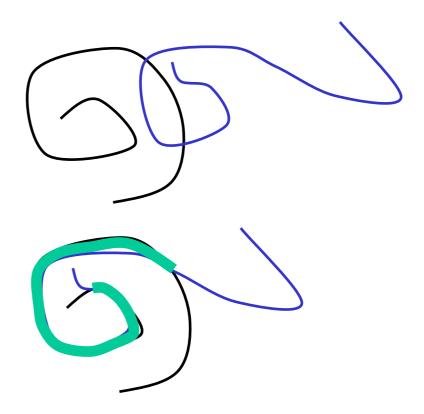
- rotation
 - messier..
 - find rotation matrix to minimise $RMSD = \left(N^{-1} \sum_{i=1}^{N} \left| \vec{r_i} \vec{r_i'} \right|^2 \right)^{\frac{1}{2}}$
- summary
 - translate
 - rotate
 - apply formula
- still not finished

Which Atoms ?


What tells me the shape of a protein?

• backbone trace

What happens if you include all atoms ?


- bigger *rmsd*
- normal choice
 - C^α
- sometimes
 - N, C^α, C
- all atoms ?
 - when a model is very close

Still not finished with simple rmsd

Parts Of Proteins

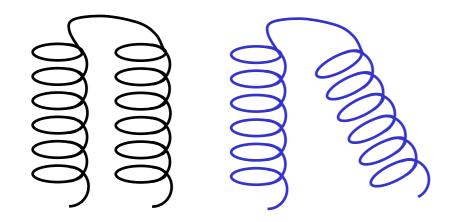
- two models of a molecule
 - mostly very similar
 - is *rmsd* a good measure ?
- identify similar parts

define

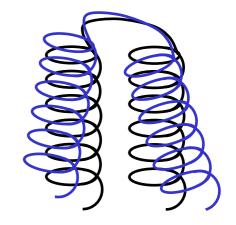
Selection of Interesting Atoms

• define a threshold like thresh =2 Å

```
d = \{ |r_i - r'_i| \} i=1..N
sort d
```


```
diff= rmsd (\{r_i\}, \{r_i'\})
while (diff > thresh) {
  remove largest d
  superimpose ({r}, {r'}, {d})
  recalculate distances
  diff = rmsd ({r}, {r'}, {d})
if (diff < thresh)
  return {d}, diff
else
  return broken
```

• result ? a subset of interesting atoms


Subsets of Atoms

- Originally, quantify structural differences as Å *rmsd*
- Alternative quantity implied
 - number of residues used for *rmsd* below threshold
- implicit rule
 - as number of atoms \downarrow calculated *rmsd* \downarrow

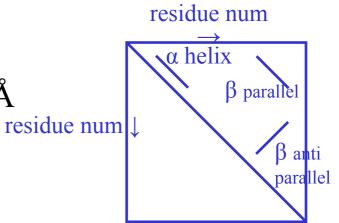
Why Not Use rmsd

• helices identical, fold identical *rmsd*?

- superposition requires rotation, affects all atoms
- big *rmsd*, but structure has hardly changed
- do not see that helices are identical
- solutions
 - use angles (other problems)
 - distance matrices

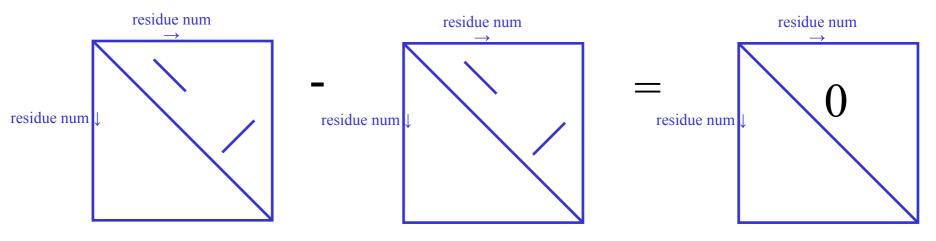
Distance Matrices With Numbers

Another characteristic of structures

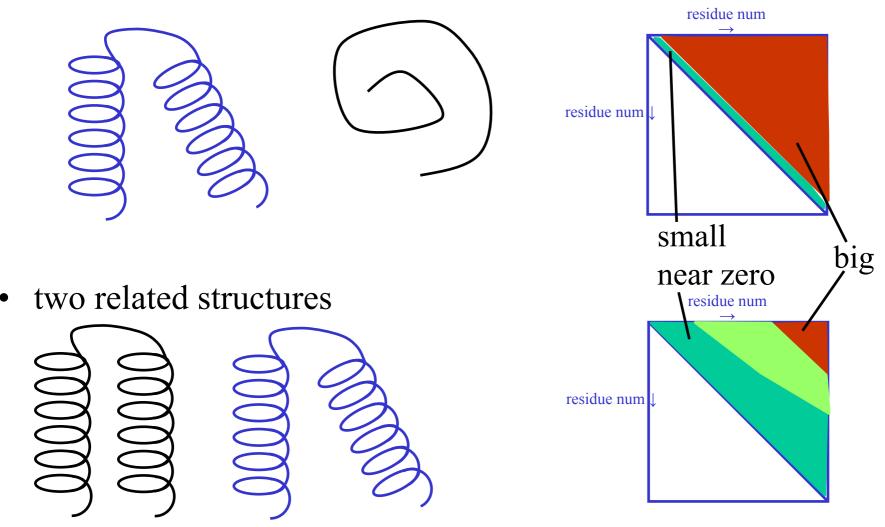

- C^α distance matrices
- simply measure the distance between C^{α} atoms

	1	2	3	4	5	6	7	•••		N
1	0	3.8	6	7	• • •					
2		0	3.8	5	• • •					
3			0	3.8	4.5	•••				
4				0	3.8					
5					0	3.8				
6						0	3.8			
7							0	3.8		
•••								0	3.8	
									0	3.8
N										0

Distance Matrix for Recognising Structure


One way to summarise a structure

- plot C^{α} distance matrix, points below 4 Å
- can make α -helices and β -sheets clear


Distance matrix for comparing structures

- take two similar proteins
 - look at the difference of distance matrices

Comparing Distance Matrices

• consider two very different structures

• pictures are better than any single measure, but...

From Distance Matrices to Single Number

For lots of comparisons, single number is more convenient

- root mean square (*rms*) difference of distance matrices
 - define distance between C^{α} atoms *i* and *j*

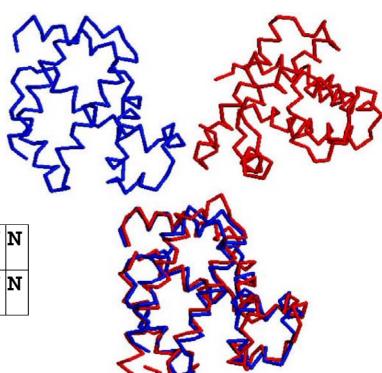
$$d_{ij} = \left| \vec{r}_i - \vec{r}_j \right|$$

• *rms* of distance matrices measure is

$$rms = \left(\frac{2}{N(N-1)}\sum_{i=1}^{N}\sum_{j>i}^{N} (d'_{ij} - d_{ij})^{2}\right)^{\frac{1}{2}}$$

- just like all other *rms* quantities
 - normalised over top half of matrix

Summary – Comparing Models / Structures

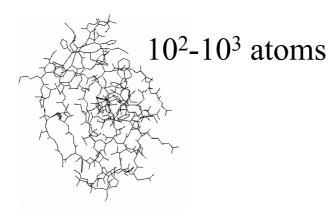

- rmsd
 - most popular
 - requires superposition (translate + rotate)
 - can be fooled by "hinge" movements
- to look at the shape of a molecule use C^{α} or backbone atoms
- numbers in Å have a physical meaning
- to look for the common core of a structure, find a subset of backbone
- other measures may be better than *rmsd*
- weakness of all measures
 - a single number can never capture all information

Comparing Different Proteins

- compare red and blue proteins
- if we know which residues match
 - easy (use any *rms* formula)
- which residues match ?
 - sequence alignment ?

protein	1	A	C	D	W	Y	т	R	Ρ	ĸ	L	н	G	F	D	S	Α	C	v	Ν
protein	2	Α	C	D	W	W	Т	-	Ρ	K	V	н	G	Y	D	S	Α	C	v	Ν

- green residues backbone atoms
- pink residues ignore
- is this useful for similar proteins ? very (rat vs human haemoglobin)
- for very different proteins ? no

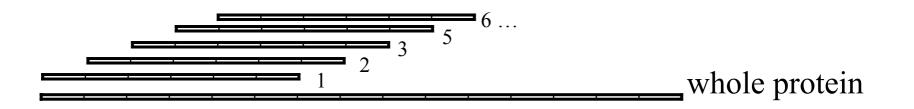


Comparing Very Different Proteins

- sequence alignment vs identity
 - as identity \downarrow , errors \uparrow
- consequence
 - methods needed
 - operate on C^{α}
 - do not require sequence
- how difficult ?
 - superposition requires recognising the deleted residue
 - can we use standard dynamic programming ?
 - no
 - gap/insertion at any position, any length
 - combinatorial explosion

Strategies For Comparing Different Structures 1. use secondary structure

- Combinatorial explosion is the problem
 - reduce size of problem
 - use elements of secondary structure



- define secondary structure
- search for superposition
- for each residue
 - find closest C^{α} in partner structure
 - use the set of matching residues to calculate *rmsd*

pictures from "Structural Bioinformatics", ed Bourne, PE and Weissig, H.

2. Peptide fragment strategy

- more general version of idea on previous page
- basis of most popular methods
- Ingredients
 - break protein into overlapping fragments (length 6 or 8)
 - protein is no longer a string of residues nor a whole structure

• each fragment is a little distance matrix

Fragment Based Comparison

- any two distance matrices can be compared
- two proteins length N and M can now be compared...

		1	2	3	4	5	• • •		<i>N</i> -7
	1	1.3	1.0	2.0	0.9	• • •			
protein 2 fragments ↓	2	2.7	2.3	0.5	•••				
	3	5.5	4.4	•••					
	4	0.1	0.5	0.3	3.3	4.2	•••		
	5	1.9	4.4	5.5	0.3	3.3	•		
	6	4.4	1.6	1.7	5.0	2.3	• • •		
	•••	4.1	3.1	3.3	4.4	0.2	3.3	•••	
	М-7	5.2	1.1	0.1	5.5	4.4	0.1	3.3	0.1

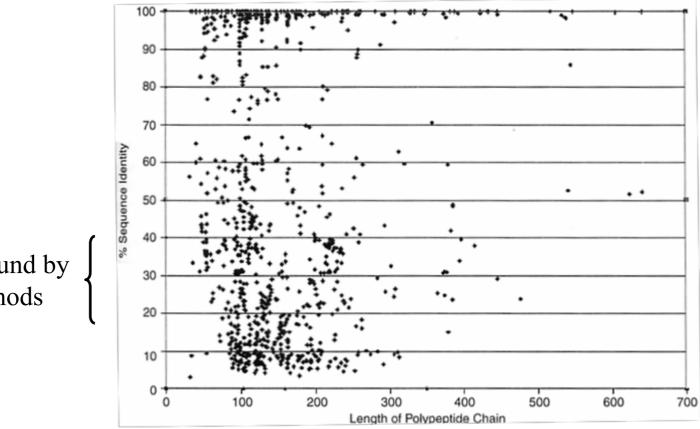
protein 1 fragments →

- imagine *rmsd*
- this is now like a sequence comparison problem

Finding Equivalent Fragments

- find optimal path through matrix
- classic dynamic programming method like sequence comparison
 1 2 3 4 5 ... N-

	1	2	3	4	5	• • •		N-7
1	1.3	1.0	2.0	0.9	•••			
2	2.7	2.3	0.5	•••				
3	5.5	4.4	•••					
4	0.◀	0.5	ф. 2	3.3	4.2	•••		
5	1.9	4.4	5.5	0.3	3.3	•••		
6	4.4	1.6	1.7	5.0	2,3	•••		
•••	4.1	3.1	3.3	4.4	0.2	3.3	• • •	
N-7	5.2	1.1	0.1	5.5	4.4	0:1	3.3	0.1


- like sequence comparison
 - find optimal path through matrix
 - classic dynamic programming method (N & W, S & W)
 - uses gap penalties

Comparing Different Size Protein Structures

- Break protein into overlapping fragments
- fragments can be compared to each other via distance matrices
- align like sequences
- from aligned fragments, get list of aligned residues
- using aligned residues, calculate *rmsd*, *rms* of overall distance matrices

How Important Are These Similarities ?

- survey 1000 proteins
- find structurally similar pairs
- plot sequence identity

may not be found by sequence methods

pictures from "Structural Bioinformatics", ed Bourne, PE and Weissig, H.

Summary of All Protein Comparisons

Classification of proteins

- could be done by sequence, better by structure Structure comparison
- for one protein
 - selection of atoms
- for different proteins
 - requires list of matching atoms
- for similar proteins
 - can use pairs from sequence alignment
- for often dissimilar proteins
 - pure structure based method