Comparative / Homology Modelling

Andrew Torda, wintersemester 2008 / 2009, GST

Viciously abbreviated – one topic in depth

- rotamer optimisation
- remote sequence alignments
- loop prediction ---- my preference
- substitution matrices

My plan

- Quick overview of template selection
- loop prediction
- we keep track of topics for the exam

Who cares

Experimental structures are best, but

- not all proteins can be
 - expressed
 - crystallised
 - solubilised
 - labelled (for NMR)
 - assigned / phased ...

Sometimes we know

- protein is vital to disease / function
 - from classical chemistry / biochemistry

Most basic rule

Mission

• make a model (guess for coordinates) from sequence information

Available information

- sequence always available
- possibly
 - some functional information
 - some chemistry

Guiding belief

- similar sequence gives similar structure
 - overall fold
 - local segments think chemistry

Expectations of a model

Expectations

- is model enough?
 - maybe for
 - designing a drug? difficult
 - finding essential residues
 - locating differences compared to related structures

Fundamental hope

- If two proteins have a similar sequence, structures are similar
- we can build a good model for one protein using structure from a related one (of known structure)

Reasonable expectations

- two proteins, 2mnr, 4enl have easily detectable sequence homology
- could one have been modelled, knowing the other?
- knowing the structures below, this is the limit of what could be done

Sequence and structure similarity

Two proteins with similar sequence

- how likely is similar structure?
 - question of degree (how similar?)

Reasons?

- intuitive
- evolution
- physics (not today)

Intuitive

- people, pigs and horses have blood, breathe and need haemoglobin
- organisms are not identical, but similar
- there must be lots of haemoglobin like proteins

Evolutionary reasons

What does **NOT** happen

- living human, pig, e. coli
 - a single residue mutates
 - protein adopts a totally new structure
 - cannot carry out function
 - not a robust system

Consequence

- proteins must be able to tolerate mutations and keep working
- sequences must vary
 - structure and function do not change too much
- possible sequences are explored
 - continuously
 - randomly (almost)

Overall modelling protocol

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure
- 6. verify

Finding a template / parent

How unique is my sequence?

- given human haemoglobin, you would find horse, pig, and 100s of haemoglobins
- given a strange enzyme from an exotic virus, it may have no obvious homologues it has evolved too much
- blast / psi-blast / fasta / hidden Markov models (Prof Kurtz lectures)

high sequence identity	low sequence identity	very low
(>~20-25 %)	(<~20-25 %)	
blast, fasta, anything	psi-blast, HMMs	psi-blast, optimism

Why are these figures vague (≈ 15 to 25 %)?

- Important factors
 - length and degree of similarity
 - number of similar sequences

Template reliability

Length and degree of similarity

- old rule
 - < 20 %, not similar
 - > 25 % similar
 - otherwise (twilight zone)
- why is this not enough?
 - consider random mixture of amino acids
 - add bias of composition (some amino acids are rare)
 - compare a lot of proteins and say
 - pairs have 15 % similarity (average)
 - we see a pair of 20 % similarity for 50 residues
 - is it significant?
 - we see a pair of 20 % similarity for 600 residues
 - more convincing

Quantifying importance of similarity length

- Figure from last semester (purely empirical)
 - we know the size of an alignment, how often are the two proteins not (structurally related)

• but there is more to deciding whether or not similarity is significant

More to reliability

- how significant is the similarity between two proteins?
 - does not only depend on the two proteins
- reminder of psi-blast method ...

Blast, Fasta, Psi-blast reminder

- We have a database of all protein sequences
 - + a list of all structures
- search database of structures to find closest known structure
 - scan every sequence using fast method (blast, fasta)
 - do not do full optimal alignment
- psi-blast decoration (important / effective)
 while (not converged)
 scan database of all sequences (not just struct
 - scan database of all sequences (not just structures) collect close homologues build profile / modify score matrix
- maybe database includes structure files or homologue sequence information can be used on structures

Sequence alignment

- we have picked a template for our sequence now...
- decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- overall structure
- 6. verify
- we need an alignment
- how does this differ from the style described in other lectures?
 - not scanning a database (10⁶ sequences)
 - one or few alignments
 - we can do best possible alignment

Careful alignments

- Database scanning uses approximations
- Now, computer time not a problem
- Use
 - most expensive alignment algorithm, could be one of
 - Needleman and Wunsch
 - Gotoh
 - Smith and Waterman
 - careful selection of substitution matrix
 - careful selection of gap penalties
- example..

Difficult alignment example

- unknown sequence ANDREW
- sequence of structure ANDRWQANDRKWSANDRWWC
- reasonable alignments

```
ANDR-WQANDRKWSANDRWWC
```

```
ANDREW----- guess 1 [ includes gap -----ANDREW-----C guess 2
```

```
-----ANDREW- guess 3
```

- How do they differ? Is one correct? More likely to be correct?
- guess 1 means that a residue has disappeared (difficult to model)
- guess 2 involves K->E, guess 3 W-> E
- Intuitively?
- Quantitatively? substitution matrices ...

Amino acid substitution matrices

Intuitively

- measure amino acid similarity
- as a chemist ask is this glu like another charged sidechain?

or a huge hydrophobic sidechain?

Think evolution

- if a "-" residue mutates to a "+", will it kill the organism?
 - maybe
- if it mutates to a large, greasy, insoluble residue will it kill you?
 - more often

Substitution matrix - what should it say

• a boring matrix (like DNA)

	A	C	G	T
A	1	0	0	0
A C		1	0	0
G			1	0
Т				1

- a more interesting matrix
- it tells us that
 - cys (C) is special (does not want to mutate to anything)
 - glu and asp are similar
 - phe and tyr are similar
 - real matrices
 - 20 x 20 (at least)
- Where do real matrices come from?
 - chemistry? No
 - evolution? yes

	A	C	D	E	F	••	Y
A	5	0	1	1	1	••	1
C		10	0	1	1	••	1
D			6	3	0	••	0
E				6	0	••	0
F					10	••	8
•••						••	••
Y							10

Building substitution matrix (collect data)

- Similar sequences are easy to align (by hand?)
- count how often a residue changes to each other typ

ANDRWSANDRK and **WPANLHREWAN**

ANERWSANDRK and **WPLNLHREHAN**

- there is no question about alignment (obvious)
- immediately collect rate of change data
- ullet some residues almost never change to anything $_{
 m A}$ $_{
 m L}$ $_{
 m W}$ $_{
 m H}$
- some pairs change often
- turn into similarity matrix?
 - take $log(M_{ij})$

A	3	1	0	0
L		1	0	0
W			2	1
Н				1

log-odds scores

- will re-appear in a chemical context later
- look at mutations and see x-> A
 - is this interesting?
 - how common is **A**?
- - must define N_{exp}
 - for substitution frequency f_{AB}

$$N_{exp}^{AB} = \frac{N_A}{N} \frac{N_B}{N} N$$

- log vs log, vs ln
 - not important

• how common is **A**?
• general logs-odds probability
$$score = log \left(\frac{N_{obs}^{AB}}{N_{exp}^{AB}} \right)$$

Substitution matrix – remote homologues

Recipe above

- based on reliable data
- good for similar sequences maybe not remote homologues Remote homologues
- A<->B easily
- B<->C easily
- A<->C less frequent
- so between close neighbours
 - AC change much less than AB or BC
- remote homologues, more evolution, more A<->B<->C
 - over long time, A<->C will seem more frequent
- use different matrices depending on how remote homologues

Sidechain replacement

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure
- 6. verify

How reliable are any sidechains?

- depends on
 - size
 - interactions
 - temperature
 - location (buried, accessible)

Sidechains – should we worry

When do we not care?

- for some residues, not meaningful (ala example)
- some residues entirely on surface of protein
 - interact with solvent
 - barriers to rotation?
 - smaller than kT
 - all conformations accessible

When is it sensible to worry?

- sidechain is big and buried
- sidechain is charged and buried (salt bridge ?)
- example trp usually
 - big
 - buried
 - hydrophobic
 - not very mobile

Sidechain placement

How to place sidechains

- if identical to parent
 - re-use parent coordinates
- in all cases C^{β} is known from backbone
- question
 - what angle should I have at each rotatable bond?

Reasonable strategies

- initial placement
 - random
 - probabilities from protein data bank?
- fix !..

Fixing sidechains

Considerations

- atoms do not lie on top of each other
- residues like to pack (few holes in proteins energy arguments)
- hydrophobic residues like each other
- charged and polar residues usually talk to solvent
- buried charges in salt bridges / no free charges in protein core

Can we write this down as a formula?

- almost
 - an energy function should contain this (more later)

Can we solve this like a conventional formula?

• no...

Fix structures from a formula?

- You are asked to minimise $y = (x-5)^2$
- easy
- Our function
 - variables are hundreds of (x, y, z) coordinates
 - many almost similar answers
 - no analytic solution
- Energy functions in detail soon

What can one do?

• there are ways to reduce energy of a structure..

Optimising sidechains

- Basic philosophy
 - write down some function for energy +
 - energy minimisation
 - molecular dynamics
 - Monte Carlo / simulated annealing
 - self-consistent mean field methods
 - clique method our example
 - so as to rotate side-chains / make conformations more likely

Rotamers and cliques

- Many ways to optimise side chains
 - annealing, simulations, self-consistent mean field optimization
- Clique detection
 - just one example (not best, fastest, ...)
- Ingredients
 - side-chain rotamers (discretisation)
 - score for energies / clashes
- definition
 - clique subgraph where each point is connected to all others

- Most sidechains have rotatable angles (more than 1)
 - for each angle usually 2 or 3 angles are more likely
 - approximate:
 - pretend each side chain may only exist in one of the preferred positions "rotamers"
 - per sidechain
 - maybe 3, 9, .. rotamers
 - crude? yes
 - useful?
 - transform problem into a smaller search

- Fitting rotamers in a protein
- simple quasi-energy function
 - atoms may not clash
 - imagine 0 is fixed
 - 0 does not fit with 1
 - OK with 2 or 3
 - 1 is not OK with 0, 2, 3
 - OK with 4, 5, ...9
- what we want lists of who is compatible with who

draw as a graph

- connections for 0 and 1 drawn
- do for all other nodes (rotamers)
- no edges between nodes for 1 residue

- imagine there is only one possible set of rotamers
 - every node (rotamer) will be connected to every other
 - = clique
- imagine there are two solutions
 - there will be two cliques
- application
 - take protein
 - build graph
 - find all cliques
 - write out lists of sidechain conformations
- what was a very difficult problem seems to be tractable but...

Rotamers – problems with cliques

- Killer problem
 - finding maximal cliques is very very difficult
- Rotamer concept
 - side chains do not exist at 0, 120, 240°
- Better energy functions are more complicated
 - not compatible/incompatible
 - requires thresholds
- decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure
- 6. verify

Broken main chain

• Typical situation

ANDR-WQANDRKWSANDRWWC parent

ANDREW---DRKWS--DRWWC model

our model...

- basic problem...
 - pieces of unknown structure
 - endpoints relatively fixed
 - should be joined

Loop modelling

- Loop problem
 - do not want to disturb regular secondary structure
 - more likely to be correct
 - ends of loop relatively well known
 - composition of loop (sequence fixed)
- specifically
 - find an arrangement of backbone and sidechains which
 - is geometrically possible
 - low energy
- Possibilities
 - distance geometry
 - database search
 - brute force

Methods for loops

Distance geometry

- we know
 - end points and distances
 - sequence of loop
 - all bond lengths and angles
- use distance geometry to generate plausible arrangements

Results?

- arrangement of atoms with
 - correct covalent geometry
 - no atoms on top of each other (set by minimum distances)
- little consideration of angles

Loops Database searching

Database searching

- imagine we have a 9 residue loop
- take protein data bank
- collect coordinates of all 9-residue loops
- insert those with correct end to end distance
- refinement...
 - insert those with almost correct distance & /
 - similar sequence to loop residues

Loops – brute force

Desperation / brute force for small number of residues

- divide angles into pieces (maybe 30°), 360/30 = 12
- test every combination (joining ends, energy)
- called "grid search"
- How many angles?
- per residue
 - fix ω
 - phi φ , psi ψ 12×12=144
- possibilities = $144^{N_{res}}$

General repairs

- 1. decide on template
- 2. align sequence (unknown structure) to known structure / template / parent
- 3. replace sidechains of parent with new ones
- 4. fix
 - gaps
 - insertions
 - loops
- 5. overall structure
- 6. verify

What do we have now?

- sidechains placed and maybe optimised
- rough guess coordinates for all residues (including loops)

Broken?

- sidechains and loops often wrong
- small changes in other parts of structure
- time for last refinement .. again
 - energy minimisation / molecular dynamics / ...

Verification

General vs specific

- all proteins have some characteristics
- your protein may have some specific properties
- General properties (from previous slide) easy to check?
- atoms do not lie on top of each other ©
- residues like to pack (few holes in proteins) ©
- hydrophobic residues like each other ©
- charged and polar residues usually talk to solvent ©?
- buried charges in salt bridges / no free charges in protein core ?
- backbone angles / ramachandran plot

Checking by energy

Use a classical energy function (details next semester)

- if physics were perfect, would include all ideas mentioned
- details good (atom overlap, angles, ..)
- weakness?
 - may be poor at overall structure

statistical approach

- take features you believe in
 - hydrophobic residue on surface, buried residue in middle...
 - phi / psi distributions
 - count occurrence in databank
- count occurrence in your model
- see if model is statistically plausible

Specific protein properties

Collect known properties

- mutation data
 - are any residues vital? does the model disagree
 - does it disagree with known facts?
 - a set of residues are known to be vital in every related protein
 - are they disturbed in model?
- sequence motifs?

Chemical predictions (examples)

- only interesting if you can predict
 - something new / testable
 - predict a charged residue is buried (asp, glu)
 - must have a changed pK_a
 - active site is changed
 - changed susceptibility to
 - reduction / oxidation...

Real world exercises

Recipe on these slides?

- too simple
 - steps combined / repeated
 - usually many models generated and checked
 - interaction with experiment (predictions tested)

Expectations

- Easy cases near Å accuracy
 - your sequence is 90 % to something of known structure
 - part of a large family of proteins
- Hard
 - less than 25 % homology + few homologues
 - consequence alignment will not be perfect
 - some predictions will be wrong
- Worse
 - membrane bound / interacting

What does one achieve?

Very easy cases?

• not much change from parent – could work there

Very difficult?

lots of errors

Why bother?

- good modellers are experts on their systems
- some proteins are so important (money) no waiting on
 - experiment
 - competitors
- simple predictions
 - which residues may I modify (binding to sensor...)
- consider absolute limits

Back to first example

- 2mnr and 4enl
- would be a typical modelling target
- in real world
 - alignment would not be perfect
 - loops may be quite wrong

The sequence alignment

2mnr and 4enl example

- this does not give best structures
- this alignment does not correspond to the nice picture

next semester... energy functions